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New in Version 2 

aML Version 2 incorporates many new features, efficiency and robustness improvements, and 
better documentation.  Among the most notable changes are the following: 

• Multinomial probit models (Sections 2.11 and 13.15). 

• Multinomial logit models (Sections 2.10 and 13.14). 

• Poisson models (Sections 2.6 and 13.11). 

• Tobit models (Sections 2.9 and 13.13). 

• Newly parameterized negative binomial models, while preserving backward 
compatibility with Version 1 (Sections 2.7 and 13.12). 

• Grid searches: specify the plausible lower and upper bounds of one or more 
parameters, plus the number of grid points, and aML will evaluate all grid points 
before selecting the best one and proceeding to estimate the model (Section 6.2). 

• Improved search path by accurate evaluation of the matrix of second derivatives in 
cases where the BHHH approximation is poor (Section 13.1.4).  This is particularly 
useful in problems with small sample sizes. 

• Model statements may subtract as well as add building blocks (Section 13.3.2).  This 
is useful for models with errors in variables and many more applications.  For 
example: 

model = regset BetaX – par Lambda; 

• Model statements may include simple variables, without coefficient (page 327).  This 
is particularly useful for estimating random coefficients models.  For example: 

model = varname * res(draw=..., ref=...) + ...; 

• Dramatically more efficient algorithms for models with very many outcomes per 
observation. 

• Numerous additions to the manual with better explanations of complex concepts 
such as residual draws, preparation of data with multiple levels, etc.   

• Numerous additional informative error messages and warnings. 

In addition, many smaller changes were made to make the program more efficient with 
computation and memory resources, less sensitive to numerical overflows and underflows, more 
user-friendly, et cetera. 
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Preface 

When aML was first released in the year 2000, we noted that rapidly increasing availability of 
longitudinal survey data had spurred a lively interest in statistical methods that account for 
correlated outcomes.  The trend has continued forcefully, with many exciting opportunities 
opening up for in-depth analyses that shed new light on the determinants of human behavior.  By 
now, researchers have a choice of several excellent multilevel software packages.  Even our 
favorite general-purpose data management and statistical analysis packages can now estimate two-
level extensions of several popular model types.  To date, only a handful of specialized packages 
support models with three or more levels.  aML is one of them.   

What sets aML apart are the many types of models that it can handle and its capability to 
estimate several types of models jointly.  aML originally grew out of the substantive research 
interests of Lee Lillard and myself in the late 1980s and early 1990s.  Lee was interested in the 
effect of children on the stability of marriages and was concerned that instable couples are more 
likely to postpone childbearing.  I was interested in the effects of medical care on child health and 
was concerned that the frail are more likely to seek care.  We worked together on many more 
models involving two or more domains of life:  marriage, divorce, childbearing, health, disability, 
mortality, wages, household income, education, etc. 

Lee unexpectedly passed away in December of 2000, to the tremendous loss of his family, 
friends, colleagues, and peers.  On a professional level, his ability to clearly see the underlying 
statistical structure of human behavior and his ability to extract information from data was 
amazing.  Fortunately, his legacy lives on, in part through aML.   

The core algorithms of what would become aML were originally developed as part of our 
economic research at RAND.  Most research was funded by the National Institute on Aging (NIA) 
and the National Institute on Child Health and Human Development (NICHD).  We are grateful 
for subsequent support from an NICHD Small Business Innovative Research grant to develop a 
user-friendly interface, unify and generalize the treatment of statistical equation modules, and 
implement a large number of informative warnings and error messages.  Since then, aML funds its 
own development. 

aML Version 2 owes much to aML users for their critical and constructive comments, 
including (but not limited to) Fiona Steele, Jan Hoem, Steve Kramer, and Øystein Kravdal.  Many 
thanks also go to Christina Ljungqvist Panis for tolerating many late nights of my absence. 

 

Constantijn (Stan) Panis 
Los Angeles, California 
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About This Manual 

This book contains user documentation of aML, a statistical software package for the 
estimation of multilevel and multiprocess models.  It consists of three distinct parts. 

Part 1, Getting Started, provides a very brief overview of the way in which aML should be 
used and explains the role of each of the application files that are bundled with the aML package. 

Part 2, User’s Guide, provides an introduction to aML’s multilevel multiprocess modeling 
capabilities.  It specifies detailed sample programs for all types of supported models and discusses 
options and features.  All sample files are also included electronically in the installation files.  It 
starts out with very simple models, which may also be estimated using standard statistical 
packages, and gradually builds up to more complex multilevel and multiprocess models. 

Part 3, Reference Manual, defines the exact data format and syntax rules and provides a full 
list of options.  The implementation of models is defined exactly, so that interpretation of 
parameter values will be unambiguous.  

 Page 

GETTING STARTED ....................................................................................................................1 
USER’S GUIDE...............................................................................................................................7 
REFERENCE MANUAL ...........................................................................................................217 

As a new user, you should follow the Getting Started instructions and, at a minimum, read 
Section 2.1 of the User’s Guide.  Depending on the nature of models in which you are interested, 
you may then skip to other sections of the User’s Guide.  The Reference Manual will benefit more 
experienced users. 
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Notation 

Throughout this book, we distinguish normal text from commands and statements that users 
need to type into the computer by adopting different type fonts.  Keywords, statements, and other 
strings that need to be typed literally or need to appear literally in control files are typeset in 
typewriter font.  Optional statements are enclosed in [square brackets].  Statements or strings 
from which the user must select one, and which are not optional, are enclosed in {curly 
parentheses}; the alternatives are separated by the pipe (‘|’) character.  Many statements and 
keywords may be abbreviated; the shortest permissible abbreviation is underlined.  Names or 
numbers that are user-defined are italicized.  Integers are denoted by an “n”, real values by an 
“x”.  A list of zero or more integers is denoted by “n...n”; a list of zero or more real numbers 
by “x...x”; a list of zero or more variable names by “varlist”.  Lists of integers, real 
numbers, and variable names must be separated by one or more blanks or commas.  For example: 

define spline [splinename];  [reference = n...n;] 
   [intercept;] 
   [effect = {right|full};] 
   nodes = x...x; 

In the definition of a spline, its (user-defined) name is optional.  Also optional are reference 
numbers, which consist of zero or more integers.  The word “reference” may be abbreviated to 
“ref” (and also to “refer”, “referen”, et cetera).  The “intercept” specification is optional. 
The “effect” statement is also optional; it must be followed by either “right” or “full”.  The 
“nodes” statement is not optional; nodes are specified as zero or more real numbers.  The word 
“nodes” may be abbreviated to “node”.   

We tend to indent statements that are part of the main statement, but appear on subsequent 
lines.  This only serves to improve readability and is not part of the syntax.  You may freely insert 
spaces and wrap statements over multiple lines.  Each line may be up to 80 characters wide, 
including spaces.  Note that every statement terminates with a semicolon. 

Keywords that are part of the aML syntax may be written in lowercase, uppercase, or mixed 
case:  define, DEFINE, Define, et cetera.  User-defined names, such as variable names and 
other names (such as splinename, above) are case-sensitive.  Variable names are limited to eight 
characters, other names to 12 characters.   

User-specified text that is part of a statement is written in italicized font.  Entire 
statements that the user may need to insert are enclosed in <arrow-shaped parentheses>.  For 
example, this book contains many sample control files.  In the interest of conciseness, we often 
write: 

<...> 

where omitted statements may need to be inserted. 
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Send Us Your Comments 

Your input is critically important to improve aML and its user-friendliness.  We would 
therefore like to hear from you.  If you detect a bug, please contact us immediately.  If something 
in the manual or an error message was unclear, please let us know, even if after a while you 
figured it out.  If you would like additional features, make sure they move up on our list of 
priorities for further development. 

The best way to contact us is by sending e-mail to <support@applied-ml.com>.  
Alternatively, post your question or message on the listserver for aML users which may be 
accessed from http://www.applied-ml.com.  We look forward to hearing from you. 
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d What is aML? 

aML is a statistical software package for estimating multilevel, multiprocess models.  It 
handles a wide variety of models:  continuous outcome models, probits, logits, hazards, and count 
models.  Many generalizations are supported, such as random coefficients models, ordered and 
sequential probit models, Tobit models, selection models, et cetera.  All may have arbitrarily many 
levels and all may be mixed and matched as desired.  Included with aML is a data preprocessing 
program and several auxiliary utilities to make life easier. 

... And what is it not? 
aML comes in PC, UNIX, and Linux flavors.  They are almost identical.  All are command-

line driven programs, i.e., aML does not have a pretty user interface with windows, menu bars, et 
cetera.  The PC version is a 32-bit application and requires Windows 95 or later (98, XP, ME, NT, 
2000).  You need to open a Command Prompt window, better known as a DOS window, and run 
aML from the command line.  (You will appreciate some non-default settings; see Recommended 
work environment on page 3.)  Models are specified in a control file which you create using your 
favorite editor; the output appears both on the screen and in an output file. 

The briefest overview 
The User’s Guide will navigate you through sample problems of increasing levels of 

complexity.  The figure below presents a schematic overview of the steps involved. 

First, you need to prepare the data.  This involves sample selection, resolution of 
inconsistencies and/or missing values, transformation of variables, et cetera.  Any data 
management package may be used, including but not limited to SAS, Stata, and SPSS.  These 
packages store data in an internal binary format which differs from the format aML requires.  The 
second step is therefore to write out the data in ASCII (raw, text) format and convert them into 
aML’s binary format using raw2aml.  Raw2aml is an application that is bundled with aML.  It 
requires a control file with information on the names of the ASCII input file(s), the level hierarchy 
of variables, and more.  You create this control file using any text editor.  We recommend 
extension “.r2a” for this control file.  Raw2aml produces a data file in aML format.  By default, 
this file has extension “.dat”.  This completes the data preparation stage.  

Model estimation takes place in the second stage (under the dotted line).  You need to specify 
your model in a control file.  This control file, preferably with extension “.aml”, may be created 
using any text editor.  aML parses the control file, reads the data, estimates the model equation(s), 
and writes the results both to the screen and an output file (by default with extension “.out”).  
You may review and copy the results from any text editor.  (In addition, auxiliary utility mktab, 
bundled with aML, is helpful in creating nicely formatted tables.) 
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d aML programs and files 

aML includes the following executable files. 

aml.exe The main program.  Reads an aML control file and an aML-formatted data 
set.  Estimates models and produces output files. 

raw2aml.exe A data preprocessor.  Reads a raw2aml control file and one or more ASCII 
data files.  Produces an aML-formatted data set and a documentation file. 

update.exe Utility to update the starting values of model parameters with the converged 
values in the corresponding output file.   

mktab.exe Utility to create a nicely formatted table from estimates in one or more 
output files. 

amltest.exe Utility to perform a likelihood ratio test using two output files with nested 
models. 

points.exe Utility to write out Gauss-Hermite Quadrature support points and weights, 
as used in numerical integration. 

The table lists names of Windows programs; UNIX and Linux names are identical but without 
the “.exe” extension. 

aML also comes with sample data, control files, and output files which are discussed in the 
User’s Guide.  Sample files discussed in Chapter 2 are located in “Samples\Chapter2”; et 
cetera.  (UNIX and Linux pathnames contain forward slashes, e.g., “Samples/Chapter2”.) 

aML distinguishes several file types: raw2aml control files, aML-formatted data files, data 
documentation files, aML control files, and aML output files.  Each type has a recommended 
extension, as described in Section 2.1.8. 

Recommended work environment 
aML is a command line driven program which takes a control file as input and generates an 

output file with results.  Both the control and output file are text files, readable by the human eye.  
Your work environment should be optimized to conveniently create and edit control and output 
files, and to conveniently submit commands from a command line.  You will want to be able to 
edit a control file and/or review an output file while a job is running in the background.   
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Under UNIX and Linux, a convenient work environment consists of multiple command line 
windows, such as X-windows.  Use your favorite text file editor (vi, emacs, pico, et cetera) to edit 
control files and review output files in one window, and run aML jobs in another.1 

On a PC running Windows, a convenient work environment consists of multiple Command 
Prompt windows, better known as DOS windows, plus a good text editor.  Do not double-click on 
aml.exe to run aML; it will run but without arguments, write out an error message, and stop 
execution after a fraction of a second.  Also, do not boot the machine in DOS mode.  From within 
Windows, you may open a DOS window by pressing Start—Programs—Accessories and selecting 
Command Prompt.  (Alternatively, press Start—Run and type “cmd”.)  By default, this opens a 
DOS window with 24 lines and 80 columns.  We recommend that you increase the number of 
lines: hold the cursor over the top border; right-click the mouse; select Properties; select the 
Layout tab; increase the heights of the window size to, say, 60 lines.  If you like, select the Font 
tab and select a font that suits you, such as 8x12 pixels.  Make sure the DOS window comes up as 
a window, not in full screen mode.  This is controlled under the Options (Windows NT/2000) or 
Screen (Windows 95/98) tab.  You may toggle between window and full screen mode by pressing 
<Alt+Enter>.  By default, the DOS window starts in a directory like “C:\Documents and 
Settings\username\Desktop”.  We recommend changing this initial directory to a directory 
in which you tend to store aML control files, say, “C:\AML”.  This may be set by first creating a 
shortcut to cmd.exe.  (The location of the Command line program, cmd.exe, is displayed in the 
top border of its Properties window.  Under Windows 2000 it may be, for example,  
“C:\WINNT\System32\cmd.exe”.)  Select the Shortcut tab of the Properties window of the 
shortcut and type the desired initial directory in the “Start in” box. 

To edit control files and review output files, any text editor is suitable. Windows operating 
systems come bundled with Notepad, which is adequate.  We recommend a more powerful editor 
like UltraEdit or Programmer’s File Editor (PFE).  PFE is freeware that may be downloaded from 
various archive sites, such as http://dl.winsite.com/files/931/ar1/win95/misc/pfe101i.zip.  It is 
great but no longer supported.  UltraEdit is inexpensive shareware; see http://www.ultraedit.com.  
(We are in no way affiliated with the producers of these editors.)  Word processor packages like 
Word and Wordperfect are not suitable because, by default, they include formatting characters in 
the document, which should be plain text. 

Under Windows, you may register file types and specify an action for Windows to take when 
you double-click on a file name of a registered type.  For example, you could register aML control 
files and specify that aML should be run when you double-click on a file with extension “.aml”.  
Windows would then open a small DOS window to run aML, and the window would close as soon 
as aML finishes.  We recommend against registering aML files.  First, since Windows closes the 
DOS window as soon as aML finishes, you would not have much benefit from the screen output.  

                                                           
1 If you prefer Windows-based text editors, you may map UNIX disk drives as-if they are local to the PC 

and edit files that way.  aML is indifferent with respect to control characters that denote the end of a line.  
(Under UNIX, a line is terminated by a linefeed character; DOS and Windows use both a carriage return and 
a linefeed.  aML accepts both conventions.) 
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Second, you would still need a DOS window to run update, mktab, or other utilities.  And third, 
by default, Windows Explorer does not show filename extensions for files that are registered, 
which makes it difficult to distinguish between the various types of files. 

License issues 
aML may only be used by licensed users.  The first time that you run aML, it asks for your 

license information:  an 8-character serial number, an 8-character authorization code, your name, 
and (optionally) your organizations’ name.  The serial number is printed on the medium on which 
you ordered aML.  The serial number and authorization code are printed on a separate, single sheet 
of white paper with License Information.  Do not lose that sheet, as you need the authorization 
code to re-install aML in the event of a disk crash. 

To provide license information, type “aml –l” from the DOS or UNIX/Linux command 
prompt.  (Argument –l contains the lowercase letter L, not the number 1.)  As prompted, type in 
your serial number, authorization code, name, and (optionally) your organization’s name.  aML 
stores this information in a license file, “aml.lic”, located in the same directory as the aML 
executable file.  It is read every time you execute aML.  To verify or update your license 
information, just type “aml –l” again. 

We encourage you to visit our website at http://www.applied-ml.com.  It contains helpful 
hints, latest updates, additional sample programs, and answers to frequently asked questions.  We 
would appreciate it if you would register your name and e-mail address with us, so that we can 
notify you in the unlikely event of a bug report (http://www.applied-ml.com/register).  We will not 
share your e-mail address or identity with other companies.  Also, we urge you to join the online 
aML listserver, in which users help each other with modeling and technical issues.  It is a free 
service. 

Getting help 
Where can you turn for help if something behaves unexpectedly?  First, of course, this manual 

should answer most questions.  The User’s Guide explains most features, generally in increasing 
order of complexity.  It contains sample data, control files, and output files, which are included in 
electronic form on the aML installation CD.  The Reference Manual defines all commands exactly 
and unambiguously, including all supported options.  Note the glossary starting on page 437 and 
the index starting on page 441. 

Second, you may find your question answered among Frequently Asked Questions, accessible 
at http://www.applied-ml.com/faq.   

Third, fellow aML users in the aML users forum may shed light on the issue.  The users 
forum communicates through an electronic mailing listserver.  You may join the group by 
following the simple instructions on http://www.applied-ml.com/listserver.  The users forum 
subscription is absolutely free and open to anyone.  We encourage you to participate in this 
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exchange as much as possible, and actively monitor and contribute ourselves.  The users forum is 
also the place to submit questions on statistical modeling and approach which are not specifically 
related to the aML software. 

Fourth, you may contact us directly for technical support by sending e-mail to 
<support@applied-ml.com>.  Be sure to include the serial number of your product and a telephone 
number where we may reach you.  Also, if relevant, attach control and/or output files that illustrate 
the issue. 
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1. Roadmap 

The User’s Guide is intended for both beginning and more experienced aML users.  It starts 
by explaining the basic concepts and philosophy, and introduces many of aML’s more advanced 
features toward the end.  It contains the following chapters. 

2.  Single-Level Single-Process Models ........................................................................................10 

This chapter explains the entire process of model estimation, from data preparation to 
interpretation of the results.  It only covers single-level, single-process models of the basic types:  
probit, logit, continuous, hazard, binomial, Poisson, negative binomial, ordered probit, ordered 
logit, tobit, multinomial logit, and multinomial probit.  Beginners should read Section 2.1 to get 
familiar with aML, and may then skip to the section corresponding to the type of model of interest. 

3.  Data Preparation ......................................................................................................................89 

This chapter explains how to prepare multilevel and multiprocess data.  A thorough 
understanding of the way data are structured is essential to the successful use of aML’s full 
capabilities. 

4.  Multilevel and Multiprocess Models.....................................................................................126 

This chapter introduces multilevel and multiprocess models.  It explains how to specify 
heterogeneity and how to make sure that residuals are correlated across equations. 

5.  Advanced Topics ....................................................................................................................154 

This chapter illustrates some of the more exciting models that aML is capable of estimating:  
extensions of probit and ordered probit models, multilevel Heckman selection models, random 
effects models, models with heteroskedasticity, errors in variables, hazard models with multiple 
duration dependencies, et cetera.  Each is an illustration of how basic features which may be 
combined to specify advanced models. 

6.  Starting Values .......................................................................................................................201 

This chapter provides hints on the specification of good starting values.  The more complex 
the model, with multiple levels and multiple simultaneous processes, the more important it is to 
specify good starting values. 
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2. Single-Level Single-Process Models 

This Chapter provides sample programs for all types of models that are handled by aML: 
(ordered) probit/logit, continuous, hazard, and (negative) binomial.  Only the basic model 
formulations are described, with one data level and one process (type of model) at a time.  Chapter 
4 discusses models with multiple levels and/or multiple processes.  We strongly recommend that 
you, at a minimum, read Section 2.1.  It describes the entire sequence from data preparation to 
interpretation of the results of a simple probit model.  In addition, you should read the section(s) 
related to the type(s) of model you wish to estimate:  

• Section 2.2 for logistic regression (logit) models; 

• Section 2.3 for continuous models; 

• Section 2.4 for hazard models; 

• Section 2.5 for binomial models;  

• Section 2.6 for Poisson models;  

• Section 2.7 for negative binomial models; 

• Section 2.8 for ordered probit and logit models; 

• Section 2.9 for tobit models; 

• Section 2.10 for multinomial logit models; and 

• Section 2.11 for multinomial probit models..   

The procedure for other types of models is much the same as that for the probit model, and to 
avoid duplication, numerous references are made to Section 2.1. 

All data and control files used in this chapter may be found in the “Samples\Chapter2” 
directory. 
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2.1. Probit Model 
This section explains how to estimate a simple probit model.  Even if you are not interested in 

probit models, we urge you to read on, as most of this section applies equally to other types of 
models.  

aML offers only limited data manipulation capabilities.  Most data preparation is therefore 
performed using a third-party software package, and aML serves to estimate model parameters 
only.  The main steps are: 

• Prepare your data using a third-party software package (SAS, Stata, SPSS, or other).  Data 
preparation involves sample selection, outcome measurement, and selection of potential 
explanatory variables.  Many software packages drop all observations with any missing model 
variable from model estimation; aML does not accept missing values at all.2 

• Write out your data into standard ASCII (raw, text) format.  In SAS this involves the “put” 
command; in Stata the “outfile” command.   

• Convert the raw data into aML format using executable program raw2aml (included with the 
aML package). 

• Specify and estimate your model using executable program aML. 

We now illustrate each of these four steps, starting with data preparation.  We assume that the 
sample has been selected and that missing values have been resolved. 

2.1.1. Data Preparation 

The steps to estimate a probit model are best illustrated with an example.  Suppose we have 
data on the educational attainment of 471 individuals.  We would like to determine what the 
effects are of family background and other covariates on the probability of high school graduation.  
The (SAS, Stata, SPSS) data contain the following variables: 

id respondent identification number 
educ respondent education:  1 = high school drop-out 

 2 = high school graduate 
 3 = college graduate 

female indicator variable for female (0 = male; 1 = female) 
birth18 indicator variable for whether the respondent gave birth at or before age 18 
dadeduc education of respondent’s father (same codes as educ) 

                                                           
2 This does not mean that you cannot use aML if your data contain missing values.  Instead, all missing 

values must thus be resolved, for example by creating indicator variables that flag missing values and setting 
missing values equal to the mean over nonmissing values.  See Section 3.5 for more on missing data. 
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momeduc education of respondent’s mother (same codes as educ) 
poorkid indicator variable for whether the respondent grew up in poverty 

Our sample data, as most data collected through a survey, contain a unique identifier (ID) for 
each person.  If such a variable does not exist, you must create one. 

! aML supports multilevel multiprocess modeling with potentially many replications of 
outcomes and explanatory variables.  It is therefore necessary to tell aML which 
outcomes and explanatory covariates belong together, i.e., which are part of a 
particular observation.  This is done by assigning an ID to all records containing 
outcomes and explanatory covariates.  All records with the same ID are assumed to 
belong to the same observation.  IDs must be strictly positive integers. 

We wish to analyze high school graduations using a probit model.  The outcome should be a 
binary (0/1) variable, but the data contain educational attainment as a categorical variable.  We 
therefore create a new variable, say, HSgrad, which is equal to 1 if educ equals 2 or 3, and 0 
otherwise. 

The explanatory variables include respondent characteristics (sex and, if female, whether she 
gave birth to her first child at or before age 18) and family background characteristics (parental 
education and whether the respondent lived in poverty as a child).  Parental education is measured 
in the same way as the respondent’s education.  We create indicator variables for whether the 
father did not complete high school (dadltHS) or completed college (dadcoll), and similar 
variables for maternal education (momltHS, momcoll).  The data are now ready for analysis.   

2.1.2. Write Out the Data in ASCII Format 

We now write out the data in ASCII (raw, text, human-readable) format.  In SAS, this may be 
done as follows: 

data _null_; 
   set dataname; 
   file ’education.raw’; 
   put id educ HSgrad female birth18 dadeduc momeduc  
       dadltHS dadcoll momltHS momcoll poorkid; 

In Stata, the same may be achieved using the outfile statement: 3 

                                                           
3 The “#delimit” statement tells Stata to keep parsing the command until a semicolon is encountered.  

It allows commands to occupy multiple lines.  By default, Stata separates data fields by multiple blank 
spaces, resulting in ASCII data files that are much larger than they need to be.  The “comma” option 
eliminates those blank spaces and separates the numbers by single commas.  By default, lines are wrapped at 
80 columns; the “wide” option keeps all numbers on one line.  This tends to be helpful in case something 
goes wrong and you need to visually inspect the ASCII file. 
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#delimit ; 
outfile id educ HSgrad female birth18 dadeduc momeduc  
   dadltHS dadcoll momltHS momcoll poorkid  
   using education.raw, comma wide; 

The order in which variables are written out is important.  The first variable must always be 
the ID.  The remainder of the variables in this simple example may be in any order, but there are 
rules for more complicated multilevel and/or multiprocess data, as explained in Chapter 3.  To 
illustrate, the first five rows of the (SAS-generated) file are: 

6 2 2 1 1 0 0 1 0 1 0 0 
10 2 2 2 1 0 0 0 0 1 1 0 
13 2 2 2 1 0 0 0 0 1 0 0 
17 1 2 2 0 0 0 0 0 1 1 1 
18 3 3 2 1 0 1 0 0 0 0 0 

This file, “education.raw”, and all other files that are named throughout this User’s Guide 
are located in the “Samples” directory with which your copy of aML was distributed.  Files 
related to the current section are in subdirectory “Samples\Section2”. 

2.1.3. Conversion into aML Format Using Raw2aml 

The raw ASCII data now need to be converted into an aML-suitable format.  This is done by 
using raw2aml, an important program that is included in the aML package.  The inputs to raw2aml 
are the ASCII data file and a control file which specifies the input data and variable names.  
Multilevel data and data pertaining to multiple processes require additional information in the 
raw2aml control file, as explained in Chapter 3.  We recommend extension “.r2a” for the 
raw2aml control file.  The control file may be created using any text editor (page 3).  The sample 
raw2aml control file (education.r2a) is: 

  1 ascii data file = education.raw; 
  2  
  3 var = educ HSgrad female birth18 dadeduc momeduc  
  4       dadltHS dadcoll momltHS momcoll poorkid; 

Note that we added line numbers to facilitate the discussion; they are not part of the control 
file.  The raw2aml control file consists of a number of statements.  All statements must be 
terminated by a semicolon. 

Blank lines may be inserted freely throughout the control file.  The control file is parsed in 
free format, i.e., all statements may span multiple lines and multiple statements may appear on one 
line.  The maximum line length, however, is restricted to 80 columns.  C-style comments may be 
inserted freely, as explained below.  We now discuss the two statements. 
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ascii data file = education.raw; 

This statement specifies the raw data input file.  It is assumed to be in the current working 
directory; specify a (disk drive and) path name if needed.  If the data file name contains spaces or 
other special characters, it must be enclosed by single or double quotes.   

var = educ dadeduc momeduc HSgrad dadltHS dadcoll momltHS  
     momcoll poorkid female birth18; 

This statement specifies the variable names.  Variable names may contain up to eight 
characters and are case sensitive.  Variable names may contain alphanumeric characters and 
underscores (‘_’), except that the first character may not be an underscore.  (Variable names 
starting with an underscore are reserved for use by aML.)   

You may assign any names to the variables.  To minimize confusion, it is a good idea to use 
the same names as in your original (SAS, Stata, SPSS) data set, but you do not need to.   

! 
Raw2aml and aML are not case-sensitive when interpreting keywords.  All names that 
are specified by the user, however, are case-sensitive.  In other words, “var = ” and 
“VAR = ” are equivalent, but “VAR = EDUC DADEDUC MOMEDUC” makes the 
variable names uppercase.  When using those variables later, in estimating models, 
they need to be specified with the same case.  On UNIX and Linux platforms, file 
names are also case-sensitive; on PCs they are not. 

 

! Tip:  Getting help 

Raw2aml and aML do not come with online documentation.  The best way to get 
quick help on the syntax of any statement is to make some obvious error in the control 
file.  Raw2aml and aML will try to provide an informative error message, often with a 
statement of the expected syntax. 

Raw2aml and aML must be executed from a DOS or UNIX/Linux window (page 3).  From 
the command prompt, type the following to convert the raw data (education.raw) into an aML-
compatible data file (education.dat) using control file education.r2a: 

raw2aml education 

Raw2aml expects the name of a control file as an argument.  It assumes extension “.r2a”, so the 
above command has the same effect as “raw2aml education.r2a”.   

By default, the output data set in aML-format has the same name as the control file, but with 
extension “.dat” rather than “.r2a”.  You may override this default using command line option 
“-o” (page 221) or “option output data file” in the control file (page 228).  In the 
example, raw2aml creates “education.dat”.  In addition, raw2aml generates a second output 
file, “education.sum”, with summary information on the data file.  That summary information 
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is also written out to standard output (the window or screen).  In the example, summary 
information file “education.sum” contains the following: 

  1 Documentation for 'education.dat' 
  2 Created on Mon Dec  9 13:20:36 2002 with raw2aml version 2.00. 
  3 Ascii data set: 'education.raw' 
  4  
  5 Number of observations:     471 
  6  
  7 ------------------------------------------------------------ 
  8  
  9 LEVEL 1 VARIABLES: 
 10 Variable    N       Mean    Std Dev        Min        Max 
 11 _id       471   576.2038   329.2789        6.0     1149.0 
 12 educ      471   2.106157   .6567038        1.0        3.0 
 13 HSgrad    471   .8322718   0.374022        0.0        1.0 
 14 age       471   44.04034   14.60066       18.0       69.0 
 15 female    471   .5095541   .5004402        0.0        1.0 
 16 birth18   471   .1146497   .3189375        0.0        1.0 
 17 dadeduc   471   1.804671   0.746666        1.0        3.0 
 18 momeduc   471   1.660297   .7080804        1.0        3.0 
 19 dadltHS   471   .3949045   .4893499        0.0        1.0 
 20 dadcoll   471   .1995754   .4001061        0.0        1.0 
 21 momltHS   471   0.477707   .5000339        0.0        1.0 
 22 momcoll   471   .1380042   .3452712        0.0        1.0 
 23 poorkid   471   .2208068   .4152315        0.0        1.0 
 24 income    471   1379.299    2437.96       10.0    25950.0 
 25  
 26 ------------------------------------------------------------ 
 27  
 28 NOTE: there is variation in all data variables. 

It is very important to carefully study this documentation file and check that it conforms to 
what is expected.  For instance, check that the mean, the minimum, the maximum of the variables 
are correct, check that the number of observations is correct, and pay attention to any notes and 
warnings. 

Note that all variables are “level 1 variables”; data with multiple levels are discussed in 
Chapter 3.  Also note that variable “_id” was added to the list.  It was created by raw2aml and is 
always equal to the observation ID.  You may use it in model specifications just like any other 
variable. 

2.1.4. Model Specification and Estimation 

The propensity (index) function of a standard probit model may be denoted by: 
y x ui i i

* = ′ +β , 

where we normalize u Ni ~ ,0 1b g .  Subscript i denotes the observation number.  Throughout this 
manual, we tend to suppress the observation subscript and only indicate replications within 
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observations.  Re-write the model therefore as y x u* = ′ +β .  Outcome y depends on the value of 
y*  relative to an implicitly defined zero-threshold: 

y
y
y

=
<
≥

RST
0 0
1 0

if  
if  

*

*  

aML is capable of estimating far more general probit models.  Residuals do not need to have unit 
variance, the threshold may be an estimable parameter, there may be multiple residuals, et cetera.  
The example only serves to illustrate the steps you need to take to estimate any type of model.   

The log-likelihood of one observation is given by: 

ln
;
.

L
x y

x y
u

u

=
− ′ =

′ =

RS|T|
1 0

1
Φ

Φ
β σ

β σ
b g
b g

if  
if  

 

where Φ ⋅b g  denotes the cumulative normal probability function. 

The model specification is communicated to aML through a control file, much like control 
files used by raw2aml.  We recommend extension .aml for aML control files.  File educ1.aml 
specifies the model and initializes the parameters: 

  1 /* Specify the data set as converted by raw2aml */ 
  2 dsn = education.dat; 
  3  
  4 /* Specify regressors */ 
  5 define regressor set BetaX; 
  6    var = 1 female birth18 dadltHS dadcoll momltHS momcoll poorkid; 
  7  
  8 /* Specify the model:  outcome and right-hand-side */ 
  9 probit model; 
 10    outcome = HSgrad; 
 11    model = regset BetaX; 
 12  
 13 starting values; 
 14  
 15 Constant    T    0 
 16 dadltHS     T    0 
 17 dadcoll     T    0 
 18 momltHS     T    0 
 19 momcoll     T    0 
 20 poorkid     T    0 
 21 female      T    0 
 22 birth18     T    0 
 23 ; 

The control file consists of three parts.  The first specifies the name of the data set and a 
number of options, if desired.  No such options are present in this example.  Note the text 
surrounded by /* ... */; these are comments, not statements, and will be ignored (see Section 
16.1 for details).  The second part defines “building blocks” of models and specifies the model(s).  
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Building blocks represent anything on the right-hand-side of a model equation: regressors, 
residuals, et cetera.  In this example, only a “regressor set” is defined and one probit model 
specified.  The third part initializes parameter values for the initial round of optimization. 

Each statement (terminated by a semicolon, as before) is now discussed in turn. 

dsn = education.dat; 

The “dsn” (data set name) statement specifies the data file to be used.  Specifying extension 
“.dat” is optional. 

define regressor set BetaX; 
   var = 1 female birth18 dadltHS dadcoll momltHS momcoll poorkid; 

This statement defines a “regressor set.”  Unlike most other software packages, aML requires 
that regressors, residuals, and other explanatory elements (collectively referred to as building 
blocks) are defined up-front.  Among such building blocks are regressor sets, best interpreted as 
linear combinations of explanatory variables, e.g., ′β X .  Here we define a regressor set and assign 
it the name “BetaX”.  Names of building blocks may be up to twelve characters in length.  They 
are user-defined and thus case-sensitive.  Our regressor set contains a “1” and seven variables.  
Mathematically, this regressor set represents: 

BetaX female birth18 dadltHS
dadcoll momltHS momcoll poorkid

= ⋅ + ⋅ + ⋅ + ⋅ +
⋅ + ⋅ + ⋅ + ⋅

β β β β
β β β β

0 1 2 3

4 5 6 7

1
 

The “1” is always equal to one and therefore generates an intercept, β 0 .  The other seven 
variables generate one parameter each, β1  through β 7 , which we want to estimate. 

! Unlike most other statistical packages, aML does not assume an intercept in any 
model.  You must specify it explicitly.  

probit model; 

This statement indicates that we wish to estimate a probit model.  The model consists of an 
outcome and the right-hand-side of the model equation with explanatory covariates and residuals. 

outcome = HSgrad; 

This statement specifies that HSgrad is the outcome variable.  aML will check that this 
variable is binary (0 or 1); other values result in a fatal error (with an informative message). 

model = regset BetaX; 
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The model statement specifies the right-hand-side (explanatory part) of the model to be 
estimated.  In this example, only covariates in regressor set BetaX enter the model.  Instead of 
specifying  

model = regressor set BetaX; 

we used abbreviation regset for regressor set; both forms are accepted.  (aML accepts 
abbreviations for most key words; see the Reference Manual for allowable syntax.)  Note that we 
defined the regressor set as BetaX and referred to it in the same way.  Its name is user-defined and 
thus case-sensitive.  Model specifications with betax, BETAX, et cetera, result in a fatal error.   

Our model is very simple and only contains one building block.  Strictly speaking, of course, 
the model also contains a residual; we return to this issue below.  Many more model statements 
below show how to specify more complicated models. 

starting values; 
 
Constant    T    0 
female      T    0 
birth18     T    0 
dadltHS     T    0 
dadcoll     T    0 
momltHS     T    0 
momcoll     T    0 
poorkid     T    0 
; 

aML uses full information maximum likelihood with an iterative search algorithm to find 
parameter estimates.  It requires that the user specifies starting values for (almost) all parameters, 
i.e., values which are used in the first iteration.  Selection of good starting values is somewhat of 
an art; see Chapter 6 for its fundamentals.   

! Good starting values are essential for successful model estimation.  The importance of 
understanding and specifying sensible starting values can hardly be overstated.   

Our model contains eight parameters ( β 0  through β 7 ) which are associated with eight 
variables or expressions in regressor set BetaX.  The user may select any name for these eight 
parameters.  We chose “Constant” and names that correspond to variable names, but we could 
have picked “beta0”, “beta1”, et cetera, or any other names.  Any character except blank spaces 
and tabs is allowed, including, for example, “dad<HS”.  Parameter names may be up to eight 
characters in length. 
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! There is an important conceptual distinction between names in the starting values 
statement and those in the variable list of a regressor set definition.  The variable list in 
a regressor set contains names of data variables (x).  The names in the starting values 
statement are names of model parameters ( β , but also σ u  et cetera).   

Not all model parameters need always be estimated.  In fact, sometimes a model would not be 
identified without restrictions on parameter values.  Also, it is often a good idea to estimate 
models in two stages:  first we optimize over the intercept only, and subsequently all parameters 
are estimated.  You may specify which parameters are estimated and which are fixed at their 
starting value.  In our example, each starting value name is followed by a ‘T’ (short for ‘true’), 
telling aML to find the optimal value for this parameter.  Alternatively, an ‘F’ (short for ‘false’) 
would fix the parameter to its starting value.  Think of these Ts and Fs as referring to the 
presumption that a parameter is estimated—true or false? 

The model is estimated by running aML from a DOS or UNIX/Linux prompt: 

aml educ1 

aML expects the name of a control file as an argument.  There is no need to specify default 
extension “.aml”.  By default, aML creates an output file with the same name as the control file, 
but with extension “.out” rather than “.aml”.  You may override this default by using command 
line option “-o” (see page 264).  The output is also written to standard output (the window or 
screen).  The output file, “educ1.out”, contains the following: 

  1                     +------------------------------+ 
  2                     |  aML version:    2.00        | 
  3                     |  Serial number:  D4711010    | 
  4                     |  Licensed to:    Stan Panis  | 
  5                     |                  EconWare    | 
  6                     |  Standard license, 10 users  | 
  7                     +------------------------------+ 
  8  
  9 Start of program:  Mon Dec  9 13:44:40 2002 
 10 Control file:      educ1.aml 
 11 Input data file:   education.dat 
 12      Created on:   Mon Dec  9 13:20:36 2002 
 13      Created by:   raw2aml version 2.00 
 14  
 15 Converge if wgn < .1 
 16  
 17 Note: the number of observations is 471; they generated 471 outcomes. 
 18  
 19 All observations are equally weighted. 
 20  
 21 The following regressor sets have been defined: 
 22  
 23 define regressor set BetaX; 
 24    var = 1 female birth18 dadltHS dadcoll momltHS momcoll poorkid; 
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 25  
 26    ---------+-----------------  Summary statistics  ---------------- 
 27    name     |      #        Mean     Std Dev         Min         Max 
 28    ---------+------------------------------------------------------- 
 29    Constant |    471         1.0         0.0         1.0         1.0 
 30    female   |    471    .5095541    .5004402         0.0         1.0 
 31    birth18  |    471    .1146497    .3189375         0.0         1.0 
 32    dadltHS  |    471    .3949045    .4893499         0.0         1.0 
 33    dadcoll  |    471    .1995754    .4001061         0.0         1.0 
 34    momltHS  |    471    0.477707    .5000339         0.0         1.0 
 35    momcoll  |    471    .1380042    .3452712         0.0         1.0 
 36    poorkid  |    471    .2208068    .4152315         0.0         1.0 
 37  
 38  
 39 The following models have been specified: 
 40  
 41 probit model; 
 42    outcome = HSgrad; 
 43    model = regset BetaX + 
 44       res(draw=_iid, ref=N(0,1)) 
 45       ; 
 46  
 47    Summary statistics of the outcome and selected variables: 
 48  
 49        outcome |       Freq.    Percent 
 50    ------------+------------------------ 
 51              0 |         79       16.77 
 52              1 |        392       83.23 
 53    ------------+------------------------ 
 54          Total |        471      100.00 
 55  
 56 ====================================================================== 
 57  
 58 Number of parameters in model:        8 
 59 Number of parameters estimated:       8 
 60  
 61 Starting values: 
 62      Name      Est?     Value 
 63   1  Constant   T      0.000000 
 64   2  female     T      0.000000 
 65   3  birth18    T      0.000000 
 66   4  dadltHS    T      0.000000 
 67   5  dadcoll    T      0.000000 
 68   6  momltHS    T      0.000000 
 69   7  momcoll    T      0.000000 
 70   8  poorkid    T      0.000000 
 71  
 72 ====================================================================== 
 73 =                      RESULTS OF OPTIMIZATION                       = 
 74 ====================================================================== 
 75  
 76  
 77 ITERATION 1            LOG-LIKELIHOOD:  -326.472322 
 78  
 79 PARAMETER        VALUE     GRADIENT   SEARCH DIR 
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 80 Constant           0.0     249.7379     1.326318 
 81 female             0.0     111.7038     .0017991 
 82 birth18            0.0    -1.595769    -.9876018 
 83 dadltHS            0.0     55.85192    -.4823325 
 84 dadcoll            0.0     68.61807     .0673997 
 85 momltHS            0.0     93.35249    -.1984345 
 86 momcoll            0.0     50.26673     .0573285 
 87 poorkid            0.0     30.31961    -.5308673 
 88  
 89 SMALLEST EIGENVALUES: 
 90     21.17582     24.1404    30.56209    47.47524    57.86358 
 91  
 92 REL PARAM CHG:  Infinity      WGTD GRAD NORM:  16.70198 
 93     GRAD NORM:  307.9576       REL LN-L IMPR:       N/A 
 94  
 95 SEARCHING TO IMPROVE FUNCTION VALUE (OLD LN-L =     -326.472322): 
 96                   STEPSIZE:  1       NEW LN-L =     -166.830419 
 97                   STEPSIZE:  2       NEW LN-L =     -157.982869 
 98  
 99 ---------------------------------------------------------------------- 
100  
101 ITERATION 2            LOG-LIKELIHOOD:  -157.982869 
102                        ABSOLUTE IMPROVEMENT:  168.489453 
103  
104 PARAMETER        VALUE     GRADIENT   SEARCH DIR 
105 Constant      2.652637    -44.14336    -.3379006 
106 female        .0035983    -16.90111     .0274338 
107 birth18      -1.975204     .1351667     .2784378 
108 dadltHS      -.9646651    -32.05151     .0189694 
109 dadcoll       .1347995    -.7763404     .0886933 
110 momltHS      -.3968691    -32.07908     .0153044 
111 momcoll       0.114657     .9670044     .5300022 
112 poorkid      -1.061735    -15.84378    -.0378441 
113  
114 SMALLEST EIGENVALUES: 
115     3.893571    6.715957    9.993674    19.70316    36.01714 
116  
117 REL PARAM CHG:  7.624181      WGTD GRAD NORM:  3.799256 
118     GRAD NORM:   67.4035       REL LN-L IMPR:  .5160911 
119  
120 SEARCHING TO IMPROVE FUNCTION VALUE (OLD LN-L =     -157.982869): 
121                   STEPSIZE:  1       NEW LN-L =     -148.492579 
122                   STEPSIZE:  2       NEW LN-L =     -149.811800 
123  
124 ---------------------------------------------------------------------- 
125  
126 ITERATION 3            LOG-LIKELIHOOD:  -148.492579 
127                        ABSOLUTE IMPROVEMENT:  9.4902905E+00 
128  
129 PARAMETER        VALUE     GRADIENT   SEARCH DIR 
130 Constant      2.314736    -15.07696    -.1672268 
131 female        0.031032    -5.533966     .0059886 
132 birth18      -1.696766    -.3710752     .1228115 
133 dadltHS      -.9456957    -10.26931     .0292697 
134 dadcoll       .2234928    -.0709573     .0546473 
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135 momltHS      -.3815647    -11.51978    -.0041862 
136 momcoll       .6446592    -.5013509    -.0005105 
137 poorkid      -1.099579    -3.450812     .0700738 
138  
139 SMALLEST EIGENVALUES: 
140       3.5673    6.367475    9.205457    17.41933    30.66419 
141  
142 REL PARAM CHG:  0.244515      WGTD GRAD NORM:  1.394551 
143     GRAD NORM:  22.54785       REL LN-L IMPR:  .0600716 
144  
145 SEARCHING TO IMPROVE FUNCTION VALUE (OLD LN-L =     -148.492579): 
146                   STEPSIZE:  1       NEW LN-L =     -147.398819 
147                   STEPSIZE:  2       NEW LN-L =     -148.129171 
148  
149 ---------------------------------------------------------------------- 
150  
151 ITERATION 4            LOG-LIKELIHOOD:  -147.398819 
152                        ABSOLUTE IMPROVEMENT:  1.0937598E+00 
153  
154 PARAMETER        VALUE     GRADIENT   SEARCH DIR 
155 Constant      2.147509    -1.460431     .0215061 
156 female        .0370206     .0149266     .0225124 
157 birth18      -1.573954    -.0082149    -.0242349 
158 dadltHS      -0.916426    -1.303831    -.0106711 
159 dadcoll       .2781401      0.43008     .0253557 
160 momltHS      -.3857509    -2.299784    -0.044566 
161 momcoll       .6441487    -.1524645    -.0457431 
162 poorkid      -1.029505    -.3623104    -0.007604 
163  
164 SMALLEST EIGENVALUES: 
165       3.3725    6.191245    9.076885    16.63573     29.0509 
166  
167 REL PARAM CHG:  .6081051      WGTD GRAD NORM:  .3258322 
168     GRAD NORM:  3.075974       REL LN-L IMPR:  .0073658 
169  
170 SEARCHING TO IMPROVE FUNCTION VALUE (OLD LN-L =     -147.398819): 
171                   STEPSIZE:  1       NEW LN-L =     -147.345206 
172                   STEPSIZE:  2       NEW LN-L =     -147.395925 
173  
174 ---------------------------------------------------------------------- 
175  
176 ITERATION 5            LOG-LIKELIHOOD:  -147.345206 
177                        ABSOLUTE IMPROVEMENT:  5.3612662E-02 
178  
179 PARAMETER        VALUE     GRADIENT   SEARCH DIR 
180 Constant      2.169015    -.4236185    -.0190039 
181 female        0.059533    -.1142998    -0.006433 
182 birth18      -1.598189     .1375638     .0190104 
183 dadltHS      -.9270972    -.1274416     .0109889 
184 dadcoll       .3034959     0.045473     .0125469 
185 momltHS      -.4303169    -.2230889     0.006256 
186 momcoll       .5984055    -.0795033    -0.009026 
187 poorkid      -1.037109    -.0239648     .0112697 
188  
189 SMALLEST EIGENVALUES: 
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190     3.338989    6.200334    9.224347    16.66032    28.93176 
191  
192 REL PARAM CHG:  .1080579      WGTD GRAD NORM:  0.098096 
193     GRAD NORM:  .5351764       REL LN-L IMPR:  .0003637 
194  
195  
196 ====================================================================== 
197 =                 ESTIMATION CONVERGED SUCCESSFULLY                  = 
198 =                       RESULTS OF ESTIMATION                        = 
199 ====================================================================== 
200  
201 Convergence based on: 
202    Weighted gradient norm:         .098096 < .1 
203    Relative function improvement:  .0003637 
204    Gradient norm:                  .5351764 
205    Relative parameter change:      .1080579 
206  
207 ====================================================================== 
208  
209 Log Likelihood:  -147.3452 
210                                           BHHH-based, non-corrected 
211   Parameter    Free?     Estimate         Std Err        T-statistic 
212  
213   1  Constant    T     2.1690153696     .26482410439        8.1904 
214   2  female      T     .05953298334     .20359465728        0.2924 
215   3  birth18     T    -1.5981892361     .26934305816       -5.9337 
216   4  dadltHS     T    -.92709717231     .20713749611       -4.4758 
217   5  dadcoll     T     .30349586089     .37146558685        0.8170 
218   6  momltHS     T    -.43031691961     .19506406359       -2.2060 
219   7  momcoll     T     .59840551662     .51691293565        1.1577 
220   8  poorkid     T    -1.0371088315     .19918910979       -5.2067 
221  
222 ====================================================================== 
223  
224 Elapsed clock time is 0 seconds. 

Line numbers are not part of the output file, but were added to facilitate discussion.  We now 
briefly discuss the output. 

Lines 1-7 indicate the version of aML which estimated the model and writes out license 
information. 

Lines 9-13 document the time of execution, the name of the control file, and the name, 
creation date, and raw2aml version of the data set. 

Line 15 states the convergence criterion.  By default, the iterative search terminates when the 
weighted gradient norm (wgn) is less than 0.1.4  There are several options to select alternative 

                                                           
4 The underlying idea of a weighted gradient norm is to stop searching when the parameter changes are 

sufficiently small.  The weight applied to each parameter is inversely related to the precision with which that 
parameter is estimated.  The Gauss-Newton search direction is given by (Judge et al., 1985): 
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convergence criteria (such as unweighted gradient norm, relative function improvement, and 
relative parameter change) and alternative convergence thresholds.  See “option converge” on 
page 276. 

Lines 17-19 report on the number of observations, the number of outcomes, and estimation 
weights, if any.  By default, all observations are weighted equally.  aML also supports weighted 
optimization.  See “option weight” and “option normalized weight” on page 274. 

Lines 21-36 restate the definitions of building blocks.  In this example, regressor set BetaX is 
the only building block.  The output file feeds back the names of corresponding parameter names 
(the names the user assigned in the list of starting values), and provides summary statistics on the 
regressors. 

! Starting values must be assigned in the same order as building blocks were defined.  
Adding and deleting building blocks from control files must thus be accompanied by 
corresponding changes to the list of starting values.  This creates potential for user 
error.  The output file feeds back the parameter names so that the user may check that 
parameters refer to the intended building blocks. 

Lines 39-45 restate the model specification.  Note that there is one element which we did not 
specify in the control file, a residual (abbreviated to “res”):   

res(draw=_iid, ref=N(0,1)) 

Below we will discuss the syntax for specifying residuals.  Suffice it here to say that line 44 
specifies a residual which is drawn independently, and that the residual is distributed normally 
with zero mean and unit standard deviation.  This residual, capturing u above, is part of any probit 
model.  Its standard deviation is not identified in this simple model.  aML therefore does not 
require an explicit specification of this residual; it assumes a standard normally distributed 
residual by default.  (You may, of course, specify it explicitly; see Section 13.8)  To remind you 
that it is really there, aML explicitly writes that default residual in the output file. 
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Lines 49-54 provides a tabulation of the model’s dependent variable, for your information. 

Lines 58-59 state that there are eight parameters in this model, and that all eight are estimated.  
Not all parameters need to be estimated, as explained above.  Some parameters may be fixed to 
their initial value (in the starting values statement), so that optimization is restricted. 

Lines 61-70 restate the starting values of this run. 

The remainder of the output file provides information on the iterative search procedure and 
the parameter estimates. 

Lines 77-98 show information related to the initial iteration.  At the initial parameter values 
that the user supplied, the log-likelihood is -326.472322 (line 77).  Lines 80-87 show the current 
iteration’s parameter values, derivatives of the log-likelihood with respect to the parameters, and 
the search direction.  The search algorithm is Gauss-Newton (Judge et al., 1985), i.e., the search 
direction is given by minus the product of the inverse matrix of second derivatives of the log-
likelihood (Hessian matrix) and the vector of its first derivatives (gradient).   

Line 90 shows (up to five) eigenvalues of the Hessian matrix.  (Strictly speaking, the 
eigenvalues of the Hessian matrix are all negative, so that aML reports their opposites.)  If any of 
these eigenvalues were zero or close to zero, the model would be underidentified and you should 
probably reformulate or re-evaluate the model in some way.  (This would be the case, for example, 
if a threshold was being estimated in addition to an intercept, or a standard deviation of the 
residual, σ u .)  No such problem exists here.   

Lines 92-93 show the current iteration’s values of metrics which may be used to decide on 
convergence.  Only the weighted gradient norm is relevant in this run.  In the first iteration it is 
16.70198, which exceeds the (default) threshold of 0.1.  The program will thus continue searching.  
Convergence criteria may alternatively be based on the relative parameter change, gradient norm, 
and the relative function improvement.  See “option converge” on page 276 for more details 
and definitions.   

Lines 95-97 report the log-likelihood as the program takes increasingly large steps in the 
search direction.  At stepsize 1, the log-likelihood improves from about –326 to –167, et cetera.  
(At stepsize λ , parameters are equal to their values at the beginning of the current iteration plus 
λ  times the search direction.  Parameter Constant, for example, equals about 
0 0. + 1.326 = 1.326  at stepsize 1 and 0 0 2. *+ 1.326 = 2.652  at stepsize 2.)  At stepsize 1, the log-
likelihood is better than the initial value.  aML continues to increase the stepsize until the log-
likelihood worsens.  The log-likelihood at stepsize 2 is better than at stepsize 1, so aML could try 
stepsize 4.  However, by default in most models, aML stops at stepsize 2.  (You may change that; 
see “option step range” on page 275.)  For the next iteration, parameter values are set to 
their “best” value, i.e., initial values plus twice the search direction in this example.   

Lines 101-122 provide information on the second iteration.  The best log-likelihood found in 
the first iteration was -157.982869 at stepsize 2 (line 97).  That log-likelihood is found back on 
line 101; line 102 shows the absolute improvement in the log-likelihood function.  Stepsize 2 
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implies that the current values of parameters are equal to the initial values plus twice the search 
direction, as found on lines 105-112.   

The weighted gradient norm (line 117) is 3.799256; better than before, but still not low 
enough to trigger convergence. 

As shown on lines 120-122, the best log-likelihood was found at stepsize 1.  Parameter values 
carried over into the third iteration are thus equal to iteration 2’s values plus the search direction. 

Lines 126-193 show the results for iterations 3, 4, and 5.  After evaluating the log-likelihood 
(and derivatives) at iteration 5’s parameter values, the program found a weighted gradient norm of 
0.098096.  This is below the threshold value 0.1, so convergence is achieved and no attempt is 
made to improve the parameter values any further. 

Lines 202-205 show the values of the four potential convergence metrics with an indication of 
the criterion that triggered convergence (line 195).   

Lines 202-213 provide the log-likelihood upon convergence with parameter estimates, 
standard errors of parameter estimates, and t-statistics.  Line 210 notes that the standard errors and 
t-statistics are based on the BHHH procedure (Berndt, Hall, Hall, and Hausman, 1974) and “non-
corrected.”5  For small samples, you may want to compute standard errors more accurately using 
“option numerical standard errors” (Section 13.1.5).  In addition, you may compute 
robust (Huber-corrected) standard errors using “option huber” (Section 13.1.6). 

Line 224, finally, reports the duration of the estimation.  This example ran in “0 seconds” on a 
PC with a 1.7GHz Xeon processor.  On UNIX machines, both elapsed clock time and actual 
Central Processing Unit (CPU) time are reported.   

As you run educ1 yourself, you will notice that the screen output is less detailed than that 
written to the output file.  The level of detail to both screen and output file is under control of the 
user through “option screen info level” and “option file info level”, 
respectively (page 270).  Level 0 implies that nothing is written out; level 5 provides maximum 
detail.  By default, level 3 is used for screen output and level 5 for file output.  You may be 

                                                           
5 The standard errors that are reported here are subject to two approximations.  First, the variance-

covariance matrix of parameter estimates is approximately equal to minus the inverse of the Hessian matrix 
(matrix of second derivatives).  Second, by default aML approximates the Hessian matrix as minus the sum 
over individual observations of the outerproduct of first derivatives (Berndt, Hall, Hall, and Hausman, 1974): 
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where ln Li  is the log-likelihood for the i-th observation, and n is the number of observations.  The latter 
approximation is used throughout the optimization search to determine the search direction.  (Instead, you 
may force aML to compute the Hessian matrix numerically, that is, as the numerical derivative of analytically 
computed first derivatives.  See “option numerical search” on page 270.)  Both approximations hold 
asymptotically, i.e., for very large samples.   
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tempted to reduce the output levels and just focus on the final results.  We urge you to resist this 
temptation and instead learn about your model from intermediate results.  For more detailed 
explanations of the informational content of eigenvalues, weighted gradient norms, stepsizes, et 
cetera, see Section 14.4. 

2.1.5. Using Expressions Instead of Variables 

In most places of the aML control file where you specify a variable name, aML accepts 
expressions as well.  We already encountered one example in the definition of regressor set 
BetaX:  instead of a variable name, we specified a simple “1”.  Many more expressions are 
allowed.  For example, our original data set contained respondent and parental education variables 
coded as 1 (less than high school), 2 (high school graduate), and 3 (college graduate).  We created 
indicator variables HSgrad, dadltHS, dadcoll, momltHS, and momcoll for use in the model.  
However, we could have defined the regressor set as follows: 

define regressor set BetaX; 
   var = 1 female birth18 (dadeduc==1) (dadeduc==3) 
         (momeduc==1) (momeduc==3) poorkid; 

In other words, variables are replaced by expressions.  In this case, these expressions are 
conditions which evaluate to zero (if false) or one (if true).  A condition that tests for equality 
requires double equality signs (==), similar to the convention in C, Stata, and other computer 
languages.  We added parentheses around each expression to improve readability; they may be 
omitted. 

Expressions may also be used in the outcome specification.  For example, our outcome could 
have been specified as 

outcome = (educ>=2); 

The ability to define indicator and other variables in the model specification permits greater 
flexibility in model exploration.  For example, you may experiment with alternative dummy 
variable definitions, and with interactions of variables.  In addition, since only the underlying 
categorical variables need to be included in the data, the data set size may be kept relatively small. 

The table below lists the operators may be used in expressions. 

exp(x) exponent 
int(x) integer portion (truncation) 
log(x) natural logarithm 
abs(x) absolute value 
sqrt(x) square root 
spline(x, nodes) piecewise-linear spline transformation (see below) 
min(x,y[,...]) minimum 
max(x,y[,...]) maximum 
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x^y x to the power y 
x*y x times y 
x/y x divided by y 
x+y x plus y 
x-y x minus y 
x==y x equals y (evaluates to 0 if false, to 1 if true)  
x<y x is less than y (evaluates to 0 if false, to 1 if true)  
x<=y x is less than or equal to y (evaluates to 0 if false, to 1 if true) 
x>y x is greater than y (evaluates to 0 if false, to 1 if true) 
x>=y x is greater or equal to than y (evaluates to 0 if false, to 1 if true) 
x!=y x is not equal to y (evaluates to 0 if false, to 1 if true) 
x and y Boolean and (evaluates to 1 if and only if both x and y equal 1)  
x or y Boolean or (evaluates to 1 if x, y, or both equal 1)  
not x Boolean not (evaluates to 1 if x equals 0)  

The expressions may also be combined as desired, and standard mathematical preference rules 
apply. 

aML supports the piecewise-linear spline transformation.  It transforms a variable into a 
vector of new variables.  Each new variable represents the original variable on a specific segment 
of its range, so that the estimated effect of a variable is no longer linear, but piecewise-linear.  
Suppose we would like to estimate the effect of log-income (lninc) on some outcome of interest.  
We would like to explore whether the effect of income varies over its range.  For example, we 
would like to allow for a different coefficient (slope) on log-income for each of its four quartiles.  
Suppose the 25-th, 50-th, and 75-th quartiles of log-income are equal to 6, 7.5, and 9, respectively.  
The regressor set may contain the following expression: 

spline(lninc, 6 7.5 9) 

This spline, with three nodes (also known as bend points or knots) translates into four new 
variables.  The first captures the effect of log-income between −∞  and 6; the second between 6 
and 7.5; the third between 7.5 and 9; and the fourth between 9 and ∞ .  Formally, the spline 
transformation is: 

spline  ( , )

min ,
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where ν ν ν1 2  … n , denote the nodes.  In aML’s implementation, spline coefficients may thus be 
directly interpreted as slope coefficients, not as marginal slopes.  See Panis (1994) for additional 
detail on piecewise-linear splines. 

Expressions may also be nested.  For example, we could write 
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spline(log(income), 6 7.5 9) 

where “income” is a data variable, or even 

spline(log(income+sqrt(1+income^2)), 6 7.5 9) 

(This transformation, the inverse hyperbolic sine, is similar to the logarithm but allows for 
negative input values.)  Expressions may involve any number of variables. 

2.1.6. Starting Values 

For lack of any better ideas, we set all starting values to zero in our example.  The program 
converged after just five iterations, but there are many models where convergence would have 
been much more difficult to achieve.  As a general rule, we suggest that you first let the intercept 
settle in before freeing up all parameters.  Taking the above example, first replace the starting 
values by: 

Constant    T    0 
female      F    0  /* note: not estimated */ 
birth18     F    0  /* note: not estimated */ 
dadltHS     F    0  /* note: not estimated */ 
dadcoll     F    0  /* note: not estimated */ 
momltHS     F    0  /* note: not estimated */ 
momcoll     F    0  /* note: not estimated */ 
poorkid     F    0  /* note: not estimated */ 

This model converges to Constant=0.963.  (We could have found this intercept value 
without estimation.  Data summary file “education.sum” tells us that the mean value of HSgrad 
(mean probability, fraction successes) is 0.832.  The corresponding propensity value is 

( )1 0.832 0.962−Φ = , i.e., equal to the estimated constant, up to rounding error.  Also see Chapter 
6.)  The converged value may then be used as a starting value in a run with all parameters free.   

Alternatively, the two rounds may be combined in one control file: 

Constant    TT    0 
female      FT    0 
birth18     FT    0 
dadltHS     FT    0 
dadcoll     FT    0 
momltHS     FT    0 
momcoll     FT    0 
poorkid     FT    0 

aML will estimate the model in multiple (here, two) rounds, fixing and freeing up parameters 
as specified by the Ts and Fs.  These Ts and Fs must not be separated by spaces or other 
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characters.  Combining multiple rounds of estimation in one control file is particularly useful for 
very large models that run overnight. 

! Tip:  Smoother Search Paths 

In cases where good starting values are not available, we suggest a first round in which 
only the intercept is estimated, followed by a second round where all parameters are 
optimized. 

2.1.7. The Update Command 

It is often useful to update starting values in a control file with their converged values.  
Auxiliary executable program “update” provides the easiest and quickest way.  After estimating 
a model, say, in “educ1.aml”, invoke update from a DOS or UNIX/Linux prompt: 

update educ1 

where extension “.aml” is by default assumed.  Update reads output file “educ1.out”, figures 
out the converged parameter values, and overwrites the starting values statement in 
“educ1.aml”.   

Alternatively, “option starting value format” (page 273) instructs aML to write out 
converged parameter values in the same format that the control file uses for starting values.  You 
may then copy that portion of the output file and paste it back into the control file. 

2.1.8. The Mktab Command 

The mktab (“make tabulation”) program is another executable utility that is bundled with the 
aML package.  It reads one or more aML output files and writes parameter estimates in tabular 
format to standard output.  We could tabulate the results in “educ1.out” by typing the following 
from a DOS or UNIX command prompt: 

mktab educ1 

As before, default extensions (.out) may be omitted.   

Mktab is especially useful to compare parameter estimates in multiple output files.  For 
example, to compare the probit results in “educ1.out” with the logit results in “educ2.out” 
(discussed in Section 2.2), type: 

mktab educ1 educ2 

The output of this command is: 
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           educ1         educ2 
 
Constant    2.1690 ***    3.7370 *** 
           (0.2648)      (0.4999) 
female      0.0595        0.0648 
           (0.2036)      (0.3536) 
birth18    -1.5982 ***   -2.7110 *** 
           (0.2693)      (0.4704) 
dadltHS    -0.9271 ***   -1.6298 *** 
           (0.2071)      (0.3815) 
dadcoll     0.3035        0.5296 
           (0.3715)      (0.6727) 
momltHS    -0.4303 **    -0.7111 **  
           (0.1951)      (0.3396) 
momcoll     0.5984        1.3260 
           (0.5169)      (1.1104) 
poorkid    -1.0371 ***   -1.7676 *** 
           (0.1992)      (0.3448) 
 
ln-L        -147.35       -148.73 
 
NOTE: Asymptotic standard errors in parentheses; 
      Significance: '*'=10%;  '**'=5%;  '***'=1%. 

Mktab features some useful command-line options, including options to include t-statistics or 
p-values rather than standard errors in parentheses, to change the number of digits after the 
decimal point, to specify stricter significance levels to the significance asterisks, to stack estimates 
from multiple output files into one column (rather than present them column-by-column), and to 
write the table out in comma-delimited format that is easily imported into spreadsheets and word 
processors.  See Section 15.2 for details. 

2.1.9. aML File Types and File Names 

In the discussion above, we encountered several file types:  data files, control files, and output 
files.  aML does not require that file names have specific extensions, but we recommend that you 
use the default extensions to facilitate keeping track of the various files.  The table below shows 
aML’s file types and recommended file name extensions. 
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Extension File type 
.raw ASCII input file.  Created by a third-party data management package (SAS, Stata, 

SPSS) and processed by raw2aml. 

.r2a Raw2aml control file.  Contains information on the number of levels in the data, 
variables at each levels, and more.  Read by raw2aml. 

.dat Data file in aML-readable format.  Produced by raw2aml, read by aML. 

.sum Documentation on the “.dat” data file:  summary statistics on the maximum 
numbers of subbranches at each level, on all variables, and more.  Produced by 
raw2aml; read by the user. 

.aml aML control file.  Specifies the model to be estimated, the data on which the 
estimation is based, and more.  Read by aML. 

.out aML output file.  Provides results of estimation.  Produced by aML; read by the 
user. 

This concludes our example of a very simple probit model.  Chapters 4 and 5 provide more 
examples in which many more probit features are illustrated, including multilevel probit models 
with heterogeneity, probit models with nonzero threshold and/or a residual that is not standard 
normally distributed, probit selection models, and ordered probit models.  The remainder of the 
current chapter illustrates simple logit (Section 2.2), continuous (Section 2.3), hazard (Section 
2.4), binomial (Section 2.5), Poisson (Section 2.6), negative binomial (Section 2.7), ordered probit 
and logit (Section 2.8), tobit (Section 2.9), multinomial logit (Section 2.10), and multinomial 
probit (Section 2.11) models.   
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2.2. Logit Model 
This section illustrates the steps that are required to estimate a simple logit (logistic 

regression) model.  The main steps to estimate logit models are similar or identical to those for 
probit models, as explained in Section 2.1.  We therefore only highlight differences between 
estimation of probit and logit models.  If you have not read Section 2.1 yet, please do so now.   

The logistic regression (logit) model is very similar to the probit model.  A latent propensity 
or index function is again given by 

y x x u* = + + +β β β0 1 1 2 2  

and outcome y depends on the value of y* : 

y
y
y

=
<
≥

RST
0 0
1 0

if  
if  

*

*

;
,
 

where we suppressed the observation subscript.  The difference with the probit model is that we 
assume u N~ ( , )0 1  for probit models, whereas in logit models, u is assumed to follow the logistic 
distribution.  The two distributions are very similar, but the logistic distribution has a larger 
variance and fatter tails. 

Estimating a logit model is very similar to the above probit model.  Consider sample control 
file educ2.aml: 

  1 dsn = education.dat; 
  2  
  3 define regressor set BetaX; 
  4    var = 1 female birth18 dadltHS dadcoll momltHS momcoll poorkid; 
  5  
  6 logit model; 
  7    outcome = HSgrad; 
  8    model = regset BetaX; 
  9  
 10 starting values; 
 11  
 12 Constant    T    0 
 13 female      T    0 
 14 birth18     T    0 
 15 dadltHS     T    0 
 16 dadcoll     T    0 
 17 momltHS     T    0 
 18 momcoll     T    0 
 19 poorkid     T    0 
 20 ; 
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The only difference with educ1.aml is that the words “logit model” appear in lieu of 
“probit model”.  The output file is also much like “educ1.out”.  One difference is in the 
restatement of the model statement:   

 41 logit model; 
 42    outcome = HSgrad; 
 43    model = regset BetaX 
 44       ; 

Unlike in the probit model, no implicit residual is made explicit.  Logit models must always 
have a standard independent logistic residual; non-standard extensions are not supported.   

The search procedure is similar to the probit model.  Convergence is achieved after five 
iterations; see output file “educ2.out” and the mktab output shown above in Section 2.1.8.  Note 
that the logit estimates tend to be larger in absolute value than probit estimates (due to the larger 
variance of its residual distribution).  Parameter interpretation is roughly the same, though. 
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2.3. Continuous Model 
This section illustrates the steps that are required to estimate a simple continuous (normal 

density) model.  The main steps to estimate continuous models are similar or identical to those for 
probit models, as explained in Section 2.1.  We therefore only highlight differences between 
estimation of probit and continuous models.  If you have not read Section 2.1 yet, please do so 
now.   

The procedure is best illustrated with an example.  We use the data on educational attainment 
that were described in Section 2.1 and estimate a model of log-income as a function of education, 
sex, and age.  (It is highly dubious to use these same data for analyses of educational attainment 
and income, but we happily ignore this issue and focus on the mechanical steps only.) 

Formally, the continuous (normal density) model is given by: 
y x u= ′ +β , 

where y is the observed outcome and u N u~ ,0 2σd i .  We suppressed the observation subscript.  
The log-likelihood function for one observation is: 

ln lnL y x
u

u

= − −
− ′F
HG

I
KJ

1
2

2 1
2

2

2πσ β
σd i . 

Simple models like these are best estimated using ordinary least squares in any statistical 
package; the effort of learning aML only pays off in multilevel cases, where the residual structure 
is more complicated, and in multiprocess cases, where continuous equations need to be estimated 
jointly with other continuous or qualitative equations.  For expositional purposes, we briefly 
discuss the simplest case to get the basics out of the way.  Multilevel and multiprocess extensions 
are discussed in subsequent sections. 

Our continuous model covers very many types of models.  All linear models may be 
estimated, including random coefficients models with any number of levels.  We use the word 
“continuous” rather than “linear” to emphasize that the outcome is a continuous variable, as 
opposed to discrete or qualitative.  Indeed, aML’s continuous models are not restricted to linear 
models.  For example, the model equation may contain such expressions as ′ ′β β1 1 2 2X Xb gb g  and 

“structural” specifications such as λ β′Xb g .  There is one restriction on continuous models:  
(reduced form, non-integrated) residuals must be distributed normally, so that the likelihood 
function follows the normal density functional form.  ARMA and cumulative AR(1) residuals are 
supported, as are finite mixture residuals (Heckman and Singer, 1984).   

Model Specification and Estimation  

Control file inc1.aml defines the building blocks and specifies the continuous model: 
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  1 dsn = education.dat; 
  2  
  3 define regressor set BetaX; 
  4    var = 1 female (educ==1) (educ==3) age age*age; 
  5  
  6 define normal distribution; dim=1;  
  7    name=u; 
  8  
  9 continuous model; 
 10    outcome = log(income); 
 11    model = regset BetaX + 
 12       res(draw=1, ref=u); 
 13  
 14 starting values; 
 15  
 16 Constant    T    6.344076  /* mean of log(income) in raw data */ 
 17 female      T    0 
 18 dropout     T    0 
 19 college     T    0 
 20 age         T    0 
 21 age2        T    0 
 22 sigmau      T    1.374338  /* standard deviation of log(income) */ 
 23 ; 

Line 1 specifies the input data set, as created by raw2aml and discussed in Section 2.1.   

Lines 3-4 define a regressor set which contains the explanatory covariates.  Note that we use 
variable transformations.  Education categories 1 and 3 denote high school drop-outs and college 
graduates, respectively.  Age enters both linearly and in quadratic form.  (We wrote age*age but 
could have used the equivalent age^2.) 

Lines 6-7 defines a building block that we did not encounter before: 

define normal distribution;  dim=1; 
   name=u; 

These statements define a normal distribution with dimension equal to one, i.e., a univariate 
normal distribution.  The name of the associated residual is “u”.  Names of residuals may consist 
of up to twelve characters.  This definition introduces one new parameter, namely the standard 
deviation of the residual.  Distributions may have any number of dimensions; a residual name 
must be supplied for each dimension.  See Section 13.2.6. 

Lines 9–12 specify the model: 
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continuous model; 
   outcome = log(income); 
   model = regset BetaX + 
      res(draw=1, ref=u); 

We chose to analyze the natural logarithm of income, rather than income itself.  The outcome 
variable is therefore “log(income)”.  Note that any expression involving any number of 
variables may be used to specified the outcome.  The right-hand-side of the model equation is 
specified in the “model=” statement.  We specify regressors through regressor set BetaX, similar 
to the specification of probit and logit models.  The following is new: 

res(draw=1, ref=u) 

Note that “res” is short for “residual”; either may be used.  The model contains a residual 
on the right-hand-side.  Every continuous model must have at least one residual in the model 
specification.  The residual specification contains two important pieces of information: a draw and 
a name.   

Let’s start with the name:  “ref=u”.  In the example, only one distribution with one residual 
was defined.  However, complicated multilevel, multiprocess models may contain several 
distributions and residuals.  The “ref=u” (short for “reference=u”) tells aML which residual 
enters the equation.  (It refers to a residual, not a distribution.  An n-variate distribution has n 
residuals.  Distributions do not have names, residuals do.) 

The draw specification requires that the user has a solid understanding of the model.  In the 
current simple model, with just one outcome per observation, the residual structure is 
straightforward.  The important issue is that the residuals are assumed to be independent across 
observations.  That assumption is always made; if residuals are correlated across outcomes, then 
those outcomes should be made part of the same observation (same ID), and a more complex 
model arises (see Section 4.1).  The draw statement specifies which residuals are correlated within 
each observation.  Residuals that are correlated stem from the same “draw” from a distribution; 
residuals that are uncorrelated have different draws.  In the current simple model, there is only one 
outcome, one residual per observation, and the draw issue does not arise.  We specified “draw=1” 
to indicate that the residual comes from the first draw; we could have specified “draw=43” to get 
the forty-third draw, with identical results.  (The actual draw number is completely irrelevant; 
aML only cares about whether draws are equal to each other.)  As stated above, the draw 
specification specifies which residuals are correlated within each observation.  Across 
observations, draws are always independent.  It is therefore not necessary to specify different 
draws for different observations. 

The draw specification requires a variable or expression that evaluates to a strictly positive 
integer.  We just used “draw=1” here, but we could have used a variable expression, such as 
“draw=educ” or “draw=_id”, where “_id” is an implicit variable equal to the observation’s ID.  
In the current example, with one outcome and one residual per observation, all these expressions 



38 2.3.  Continuous Model 

 

U
se

r’s
 G

ui
de

 

are equivalent.  See Section 4.1 for more complicated draw specifications in multilevel and 
multiprocess models.6 

Lines 14-23 specify the parameter values that aML will use in its first iteration of the search 
process: 

starting values; 
 
Constant   T    6.344076  /* mean of log(income) in data */ 
female     T    0 
dropout    T    0 
college    T    0 
age        T    0 
age2       T    0 
sigmau     T    1.374338  /* standard deviation of log(income) */ 
; 

The first six parameters correspond to the regressors in regressor set “BetaX”.  The univariate 
normal distribution is fully defined by a mean and a standard deviation.  Normal distributions in 
aML always have zero means, so that only a standard deviation is estimated.7  Note that the 
distribution was defined after the regressor set.  Starting values are specified in the order in which 
building blocks were defined. 

Also note that the example was pretty smart about specifying a starting value for the intercept.  
When we prepared the data, we noticed that the mean of log-income was 6.344076 (not shown), so 
that is a good guess for the intercept of a model in which all other regressors are initialized at zero.  
Similarly, the standard deviation of log-income was 1.374338, so we initialize the standard 

                                                           
6 For the curious reader, here is a little preview.  Suppose we have a data set with multiple test scores per 

student.  We hypothesize that there are unobservable characteristics pertaining to a student which affect all 
his test scores, in addition to unobservables that are more test-specific.  A multilevel model may be 
appropriate: 

y X uit it i it= ′ + +β ε  
where yit  is the score of student i on a test taken at time t; ε i  captures student-specific unobserved 
characteristics; and uit  captures test-specific unobservables.  All records of a single student are grouped into 
one observation.  Residual ε i  is the same for all test scores of one student, i.e., only one draw of ε i  applies to 
all test scores, whereas new values for uit  are “drawn” for each test score.  Suppose the data contain variables 
student (with the student’s ID) and testnum (for test number).  The model specification may then be: 

model = regset BetaX +  
         res(draw=student, ref=eps) +  
         res(draw=testnum, ref=u); 

7 We could have parameterized distributions in terms of variances and covariances.  A future version 
may include this as an option; the current version parameterizes normal distributions in terms of standard 
deviations and correlations. 
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deviation of the residual to that value.  It is extremely important to select good starting values, 
particularly for complicated models (see Chapter 6). 

File “inc1.out” contains the output.  Its structure is very similar to output files from other 
model types.  Note that aML uses maximum likelihood to estimate the model coefficients, even 
though ordinary least squares would be far more efficient.  aML always uses full information 
maximum likelihood; its strength is in complicated multilevel and multiprocess models, not in 
simple continuous outcome models such as the one illustrated in this chapter. 
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2.4. Hazard Model 
This section illustrates the steps that are required to estimate a simple hazard model.  The 

main steps to estimate hazard models are similar or identical to those for probit models, as 
explained in Section 2.1.  We therefore only highlight differences between estimation of probit 
and hazard models.  If you have not read Section 2.1 yet, please do so now.   

Hazard models, also known as failure time or intensity models, are used when the outcome of 
interest is a duration until the occurrence of some event:  a recovery from an illness, a death, a 
birth, a marriage, a divorce, a machine failure, a change of jobs, et cetera (Kalbfleisch and 
Prentice, 1980).  The hazard at time t is the probability density of the event’s occurrence at time t, 
conditional on the fact that the event did not take place before time t.  The period between the 
moment at which the event became at risk of occurring and the actual occurrence is known as a 
spell or episode.  We often deal with survey data in which the event of interest has not taken place 
yet:  the patient has not yet recovered, the couple is still married, et cetera.  Such spells are known 
as censored or open spells.  The outcome of a hazard process is thus a combination of 

• an indicator variable for whether the spell is censored or not; and 

• a duration between the moment at which the event became at risk and either the timing of the 
event (uncensored spell) or the censoring date (censored spell). 

There are many types of hazard models; aML handles the most common type, proportional 
hazard models, where the effect of covariates on the hazard of occurrence is multiplicative.  (It 
actually supports some non-proportional hazard models as well; see Section 13.9)  Within that 
class, aML offers many features which make it extraordinarily flexible.  The general formulation 
of its simplest implementation is: 

ln ( ) ( ) ( )h t T t X t= ′ + ′γ β , 

where ln ( )h ti  is the log-hazard of occurrence at time t, ′γ T t( )  captures the baseline hazard 
duration dependence, and ′β X t( )  represent (potentially time-varying) covariates which shift the 
baseline hazard.  The baseline hazard duration dependence, ′γ T t( ) , is always a piecewise-linear 
spline (also known as generalized Gompertz or piecewise-linear Gompertz) in aML.  Several 
popular duration patterns may be approximated by the piecewise-linear spline, as we show below.8   

As an illustration, we study the timing of marital divorce.  The unit of observation is a couple; 
they become at risk of divorcing on the wedding date.  We start with a data set in which all 
variables of interest have been merged and missing values resolved.  We first precisely define the 

                                                           
8 aML always requires specification of a baseline duration dependency pattern.  Cox regression models 

are thus not supported.  In practice, this is rarely a limitation, since aML’s piecewise-linear duration 
dependencies adjust readily to any pattern in the data. 
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outcome; then write out the data in ASCII format; then preprocess them using raw2aml; and 
finally specify and estimate the hazard model. 

2.4.1. Data Preparation 

Our sample data come from a panel survey, i.e., a survey in which individuals are interviewed 
several times, in our case over a period spanning several decades.  We first illustrate a model in 
which all explanatory covariates remain constant for the duration of the spell, i.e., without time-
varying covariates, and return to the case with time-varying covariates below.  Our data contain 
the following variables. 

weight sampling weight 
wedding wedding date 
lowerdiv if divorced: lower bound of divorce date; if not divorced, missing. 
upperdiv if divorced: upper bound of divorce date; if not divorced, missing. 
survey last survey date 
hiseduc husband’s education (in years of schooling) 
hereduc wife’s education (in years of schooling) 
heblack indicator for whether the husband is African American 
sheblack indicator for whether the wife is African American 
agediff age difference between husband and wife 

Note that educational attainment variables hiseduc and hereduc are in years of schooling, 
unlike the definitions used in the sample data of Sections 2.1, 2.2, and 2.3. 

As stated above, the outcome consists of two parts:  an indicator for whether the couple 
divorced and the duration of the marriage.  The event indicator is named the “censor” variable.  If 
the couple did not divorce, the spell is “censored;” if the couple did divorce, the spell is 
“noncensored.”  Censored marriages may occur because the couple was still married as of the last 
survey date, because the couple was still married when the panel ended, when they dropped out of 
the panel survey, or because one of the spouses died.  In our example, we create a new variable, 
say, “censor”, which is equal to zero if “lowerdiv” and “upperdiv” are non-missing, and one 
otherwise.  Nonmissing values of “lowerdiv” and “upperdiv” are namely indicative of a 
dissolved marriage, whereas missing values indicate that the marriage was still intact as of the last 
survey date.9 

The duration of the marriage is straightforward if the couple is still married as of the last 
survey date.  The censored duration is then equal to the period between the wedding and survey 
dates.  If the couple divorced, however, we are faced with some inevitable uncertainty.  Survey 
data rarely specify the exact date of a divorce.  A respondent may report, for example, that he or 
she divorced in March 1995.  This implies that the divorce took place sometime between March 1 

                                                           
9 To keep the example simple, we ignore spells that are censored due to widowhood. 
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and March 31.  In other words, there is no single moment, but always a “window” within which 
the event occurred.  The width of the window may be one month, one year, or anything else, 
depending on the precision with which the event date was reported.  Even if the exact date is 
known there is a window, namely of 24 hours.  aML always requires the user to specify the lower 
and upper bounds of event windows.  In the example, the lower bound is the period between 
“wedding” and “lowerdiv”; the upper bound is the period between “wedding” and 
“upperdiv”.10 

The time unit (year, month, day, hour, second) may be chosen by the user to best suit the 
hazard process under analysis.  To prevent numerical problems during the estimation, we 
recommend that the average duration is in the order of between 1 and 100.  When studying divorce 
data, an appropriate unit of time is a year, since the majority of marriages last between 1 and 60 
years, with the average somewhere in between.  We could measure the durations in months 
without major problems, but expect numerical underflows and/or overflows when measuring the 
durations of marriages in seconds or millenia.  For most demographic and medical processes, the 
year is an appropriate time unit.  For other processes, such as space physics or nuclear physics, 
other units may be better.  The choice of time unit does not affect the results.  You must be 
consistent and measure all time variables in the same time unit.  So far, we only saw two time 
variables (the two duration variables), but below we illustrate many more, such as nodes in 
piecewise-linear duration dependency splines and time marks for time-varying covariates.  All 
those nodes and variables must be measured in the same time unit. 

We are now ready to define the outcomes of this hazard process.  Suppose all dates are 
measured in days since some arbitrary date, as they typically are in standard commercial data 
management packages.  Note that there are, on average, about 365.25 days in a year.  We use 
“censor” for the censor variable and “lower” and “upper” for the lower and upper bound of the 
event window.  In SAS, the code would be: 

if (lowerdiv ~= .) then do; 
   censor = 0; 
   lower = (lowerdiv-wedding)/365.25; 
   upper = (upperdiv-wedding)/365.25; 
end; else do; 
   censor = 1; 
   lower = (survey-wedding)/365.25; 
   upper = lower; 
end; 

                                                           
10 You may wonder about the precision of the wedding date.  It, too, may only be known up to a 

window.  However, hazard models always require that the moment at which the event became at risk of 
occurrence is specified exactly.  In other words, you must create “wedding” as an exact date.  Very little can 
be done about this measurement problem.  By contrast, aML fully accounts for the range of dates for the 
event date (up to accuracy of the information provided by the respondent.) 
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Note that in censored cases, “lower” and “upper” are both set to the duration between the 
wedding and the last survey date.  If a spell is censored, the duration variables must be equal to 
each other.  Uncertainty in the event date is accounted for by the two duration variables.  
Uncertainty in the begin date of the spell, or in the end date of a censored spell (e.g., the survey 
date) is not accounted for.  Prepare the data using the best guess of the exact date. 

! 
Outcomes of a hazard process 

The outcome of a hazard process consist of three variables.  If the event happened, the 
censor variable is zero and the two duration variables are equal to the durations from 
the beginning of the spell to the lower and upper bound of the event window.  If the 
event did not happen, the censor variable is one and the two duration variables are both 
equal to the duration from the beginning to the end of the spell. 

2.4.2. Conversion into aML Format Using raw2aml 

Conversion of the data into a format that aML understands proceeds in the same way as 
illustrated in sections above.  We first write out the data in ASCII format and then convert them 
using raw2aml.  Note that the “wedding”, “lowerdiv”, “upperdiv”, and “survey” dates are 
no longer relevant.  ASCII file “Samples\Chapter2\divorce1.raw” contains the following 
variables:  id weight censor lower upper hiseduc hereduc heblack sheblack 
agediff.  The first five records are: 

9 23 1 10.546 10.546 12 12 0 0 1.013 
11 23 1 34.943 34.943 3 3 0 0 0.687 
13 23 0 2.793 2.875 8 8 0 0 2.352 
15 23 0 15.012 20.052 7 7 0 0 2.352 
33 17 1 1.418 1.418 12 10 0 0 0.830 

The raw2aml control file, “divorce1.r2a”, contains the following: 

  1 ascii data file = divorce1.raw; 
  2 
  3 var = weight censor lower upper hiseduc hereduc heblack sheblack agediff; 

As always, it is important to check the output summary file, “divorce1.sum:”: 

  1 Documentation for 'divorce1.dat' 
  2 Created on Sun Feb  6 11:25:55 2000 with raw2aml version 1.00. 
  3 Ascii data set: 'divorce1.raw' 
  4  
  5 Number of observations:    3371 
  6  
  7 ------------------------------------------------------------ 
  8  
  9 LEVEL 1 VARIABLES: 
 10 Variable     N       Mean    Std Dev        Min        Max 
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 11 _id       3371   7761.647   4959.523        9.0    17302.0 
 12 weight    3371   15.88876   10.23573        1.0       32.0 
 13 censor    3371   .6938594   .4609572        0.0        1.0 
 14 lower     3371   17.99482   15.02624       0.06     73.068 
 15 upper     3371   18.83722   15.04849      0.079     73.068 
 16 hiseduc   3371   11.54109   3.012785        1.0       21.0 
 17 hereduc   3371   11.51824   2.858982        1.0       21.0 
 18 heblack   3371   .2210027   .4149838        0.0        1.0 
 19 sheblack  3371   .2438446   .4294637        0.0        1.0 
 20 agediff   3371   2.293223   4.923548    -39.663     38.081 
 21  
 22 ------------------------------------------------------------ 
 23  
 24 NOTE: there is variation in all data variables. 

Convince yourself that the number of observations is correct.  If it is too low, chances are that 
you listed too many variables in the raw2aml control file. 

The mean sample weight, weight, is 15.88876.  If we were to weight each observation by 
this weight, the false impression would arise that the sample is over 15 times as large as it actually 
is, and all t-statistics would be inflated.  We will deal with this issue below. 

2.4.3. Model Specification and Estimation 

A simple divorce hazard equation is specified in “div1.aml”: 

  1 option normweight = weight; 
  2  
  3 dsn = divorce1.dat; 
  4  
  5 define spline DurMar; nodes = 1 4 15 25; 
  6  
  7 define regressor set Getdiv; 
  8    var = 1 heblack (heblack!=sheblack) 
  9          (hiseduc<12) (hiseduc>=16) 
 10          (agediff>10) (agediff<-10); 
 11  
 12 hazard model; 
 13    censor=censor; duration=lower upper; 
 14    model = durspline(origin=0, ref=DurMar) + 
 15            regset Getdiv; 
 16  
 17 starting values; 
 18  
 19 dur0-1      TT   -.041 
 20 dur1-4      TT   -.041 
 21 dur4-15     TT   -.041 
 22 dur15-25    TT   -.041 
 23 dur25+      TT   -.041 
 24 Constant    TT   -5.64 
 25 heblack     FT    0 
 26 mixrace     FT    0 
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 27 dropout     FT    0 
 28 college     FT    0 
 29 heolder     FT    0 
 30 sheolder    FT    0 
 31 ; 

Line 1 shows the use of “option normweight”, short for normalized weight.  Our sample 
data contain an oversample of African Americans, so we wish to maximize the log-likelihood such 
that individual observations are weighted by variable “weight”.  This could be achieved by 
“option weight = weight”.  However, as we saw above in the data summary file, 
“divorce1.sum”, the average weight more than one, so that weighted optimization would result 
in inflated t-statistics and a false sense of parameter estimate accuracy.  We therefore normalize 
the weights, i.e., we rescale the weights such that the average weight is one, and the weights sum 
up to the number of observations.  The normweight option makes aML rescale the weights. 

Line 5 introduces a new building block, the “spline.”  A spline is a piecewise-linear 
transformation of a variable.  It has two major applications in aML.  First, a spline transformation 
offers a convenient way to relax the assumption that the effect of a covariate is linear.  Instead, the 
effect may be linear over a certain range, and again linear but with a different coefficient (slope) 
over the next range, et cetera (also see page 28).  Second, a spline may be used to parameterize the 
shape of the baseline log-hazard function.  To illustrate this, consider the figure below.   

Piecewise-Linear Baseline Log-Hazard of Divorce 

The figure illustrates the piecewise-linear spline, in this case with nodes at 1, 4, 15, and 25 
years.  (Nodes are sometimes called knots or bend points.)  The pattern is taken directly from 
estimates of the baseline log-hazard of divorce, as shown below.  It illustrates that the hazard of 
divorce increases very rapidly during the first year of marriage.  It then continues to increase, 
though not as fast, for the next three years.  Between the fourth and fifteenth wedding anniversary, 
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the risk decreases; it declines more mildly for the next ten years, and more steeply after the silver 
anniversary. 

aML requires the baseline log-hazard pattern to be piecewise-linear.  In practice, this is hardly 
a constraint.  The user may specify any number of nodes at any desired location.  As a result, the 
baseline pattern is capable of approximating any pattern in the data.   

It is not always easy to decide on the “right” number of nodes and their locations.  Inevitably, 
it will require some experimentation.  We recommend the following strategy. 

! 
Tip:  How to find adequate baseline log-hazard nodes 

First specify and estimate a stripped-down hazard model with an intercept and a linear 
(Gompertz) log-hazard, i.e., a spline without nodes (nodes=;).  This results in 
estimates of an intercept and a slope.  Then specify four or five nodes, spread out 
roughly evenly over the relevant spells’ range.  Initialize the intercept at the first-stage 
estimated intercept, and all slopes at the first-stage slope estimate.  Inspect the 
resulting pattern and remove nodes of which the surrounding slopes are roughly equal.  
Typically, two or three nodes are sufficient to adequately capture the baseline duration 
pattern.  Experiment by shifting individual nodes to find a pattern that captures the 
essence of the pattern in the data. 

For the interested reader, we formally present the baseline duration pattern and the likelihood 
function.  The baseline log-hazard pattern is based on the following transformation of the spell 
duration, t: 
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where ν1 1= , ν 2 4= , ν 3 15= , and ν 4 25=  denote the nodes.  Covariates enter the log-hazard 
equation additively, so they proportionally shift the baseline hazard duration pattern.  For now, 
consider only covariates that are constant over the duration of the spell.  The effects of such 
covariates are captured by ′β X .  Recall that log-hazard is defined as: 

ln ( ) ( )h t T t X= ′ + ′γ β . 

The survivor function (i.e., the probability that the event has not happened yet at time t) is by 
definition: 
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and the likelihood is: 

L
S t t
S t S t t tl u l u=

−
RS|T|
b g
d i d i

if the spell is censored at 
if the event occurred between  and .

;
 

Line 5 defined the spline: 

define spline DurMar; nodes = 1 4 15 25; 

We assigned the name “DurMar” to this spline.  As with all building blocks, names of splines 
may be up to twelve characters long.  Our spline has four nodes, at 1, 4, 15, and 25 time units.  
These time units correspond to the time unit that we chose in the data preparation, i.e., the nodes 
are measured in years since the beginning of the spell.  Given four nodes, there are five slopes:  
from the beginning of the spell until 1 year, between 1 and 4 years, between 4 and 15 years, 
between 15 and 25 years, and beyond 25 years.  A spline with n nodes generates n+1 slope 
parameters.   

define regressor set Getdiv; 
   var = 1 heblack (heblack!=sheblack) 
         (hiseduc<12) (hiseduc>=16) 
         (agediff>10) (agediff<-10); 

Lines 7-10 defined a regressor set.  It is similar to those we encountered in probit, logit, and 
continuous models.  The first expression, “1”, serves as intercept.  The third expression, 
(heblack!=sheblack) is an indicator variable for mixed-race couples.  The third and fourth 
are indicator variables for whether the husband is a high school drop-out or college graduate.  The 
agediff transformations flag couples in which the husband is substantially older than the wife 
and vice versa.  (In the example, all covariates happen to be either zero or one.  This is not 
necessary.)  

hazard model; 
   censor=censor; duration=lower upper; 
   model = durspline(origin=0, ref=DurMar) + 
           regset Getdiv; 

Lines 12-15 specify the model.  The censor statement expects a variable or expression which 
is one if the spell is censored (the event did not happen) and zero otherwise.  In our example, 
variable “censor” was created for this purpose.  The duration statement expects two variables or 
expressions denoting the lower and upper bounds of the window within which the event happened.  
For censored spells, there is no event window and the duration variables must both be equal to the 
length of the censored spell.   

The model statement specifies the right-hand-side of the log-hazard equation.  The first 
component is “durspline(origin=0, ref=DurMar)”, to be read as “duration spline DurMar 
which originates at the beginning of the spell.”  The origin specification indicates at what moment, 
relative to the beginning of the spell, the duration pattern starts.  It thereby allows for duration 
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patterns which start at moments other than the beginning of the spell.  This is particularly useful in 
cases where the hazard depends on multiple durations, multiple “clocks;” see Section 5.9 on 
overlapping splines.  The “ref” specification indicates which of the splines that have been 
defined in the control file should be used.  The model also includes regressor set “Getdiv”.   

starting values; 
 
dur0-1      TT   -.041 
dur1-4      TT   -.041 
dur4-15     TT   -.041 
dur15-25    TT   -.041 
dur25+      TT   -.041 
Constant    TT   -5.64 
heblack     FT    0 
mixrace     FT    0 
dropout     FT    0 
college     FT    0 
heolder     FT    0 
sheolder    FT    0 
; 

Lines 17-31 specify the parameters’ starting values.  Since the spline was defined first, its 
corresponding five slope parameters are initialized first.  We give them easy-to-interpret names.  
The specification of good starting values is extremely important in hazard models.  We built this 
model up in steps.  As suggested in the Tip box on page 46, we first specified and estimated a 
simple Gompertz hazard model, without covariates.  A good starting value for the intercept is 
given by (see Section 6.6): 

γ 0
1

1
= −
F
HG

I
KJ=

∑ln
N

t
nc

i
i

N

, 

where Nnc  is the number of non-censored spells in the data, N is the total number of spells, and ti  
is the length of spell i.  For censored spells, ti  is well-defined.  For non-censored spells, however, 
we argued above that there always is a window within which the event happened, not an exact 
moment.  Unfortunately, the intercept formula which incorporates such windows is very much 
more complicated than the one presented here.  We therefore propose that you cheat, and set ti  
equal to the midpoint of the event window for noncensored spells.  In our data, 2,339 marriages 
survived to an average duration of 21.79 years and 1,032 marriage ended in a divorce after an 
average of 10.78 years.  We therefore initialized the intercept at 
-ln 2339 *21.79 +1032 *10.78 = -4.0971

1032 b gc h , and the Gompertz slope at zero.  We estimated that 
model (not shown) and found an intercept of -5.64 and a slope equal to -.041.  Control file 
“div1.aml” starts at this stage.  We add nodes at 1, 4, 15, and 25 years and initialize the intercept 
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and all slopes to the Gompertz estimates.  In the first round, we estimate the baseline pattern, and 
in the second round we add regressors. 

aML produced output file div1.out, which we partially replicate: 

 <license and control information> 
 
 17 Note: the number of observations is 3371; they generated 3371 outcomes. 
 18  
 19 Observations are weighted by normalized variable 'weight'; the sum of 
 20 weights is 53561.0, the number of observations that are used in the 
 21 estimation 3371, so weights are scaled by .062938. 
 22  
 23 The following regressor sets have been defined: 
 24  
 25 define regressor set Getdiv; 
 26    var = 1 heblack (heblack!=sheblack) (hiseduc<12) (hiseduc>=16) 
 27          (agediff>10) (agediff<-10); 
 28  
 29    ---------+-----------------  Summary statistics  ---------------- 
 30    name     |      #        Mean     Std Dev         Min         Max 
 31    ---------+------------------------------------------------------- 
 32    Constant |   3371         1.0         0.0         1.0         1.0 
 33    heblack  |   3371    .2210027    .4149838         0.0         1.0 
 34    mixrace  |   3371    .1901513    .3924786         0.0         1.0 
 35    dropout  |   3371    .3820825    .4859686         0.0         1.0 
 36    college  |   3371    .1269653    .3329835         0.0         1.0 
 37    heolder  |   3371    .0341145    .1815502         0.0         1.0 
 38    sheolder |   3371    .0154257    .1232568         0.0         1.0 
 39  
 40 The following splines have been defined: 
 41  
 42 define spline DurMar; 
 43    nodes = 1 4 15 25;  /* slope coefficients: dur0-1 - dur25+ */ 
 44  
 45    ---------+-----------------  Summary statistics  ---------------- 
 46             |      #        Mean     Std Dev         Min         Max 
 47    ---------+------------------------------------------------------- 
 48    origin   |   3371         0.0         0.0         0.0         0.0 
 49  
 50  
 51 The following models have been specified: 
 52  
 53 hazard model; 
 54    censor = censor; 
 55    duration = lower upper; 
 56    timemarks = ; 
 57    model = durspline(origin=0, ref=DurMar) + 
 58       regset Getdiv 
 59       ; 
 60  
 61    Summary statistics of the outcome and selected variables: 
 62  
 63    Hazard spell durations (for noncensored spells, lower and upper 
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 64    duration variables and their difference; for censored spells, 
 65    spell duration): 
 66  
 67        censor |      #        Mean     Std Dev         Min         Max 
 68    -----------+------------------------------------------------------- 
 69      / lower  |   1032    9.402495    7.756847        0.06      50.075 
 70    0 - upper  |   1032    12.11546    10.11249       0.142      70.439 
 71      \ window |   1032    2.712905    6.700789    .0110002      46.954 
 72    1 - spell  |   2339    21.78585    15.87305       0.079      73.068 
 
 et cetera... 

Lines 19-21 document the normalized weight.  The weights are scaled down such that the sum 
of weights is equal to the number of observations, i.e., the average weight is one.   

Lines 23-38 restate the regressor set definition and provide (unweighted) summary statistics.   

Lines 40-43 repeat the spline definition and states that you assigned the names dur0-1 
through dur25+ to the slope parameters.  This information serves as a check that you initialized 
all parameters in the correct order.  Lines 45-48 provide summary statistics of the origin variables 
in spells to which the spline applies.  In our example, the duration pattern always originates at the 
beginning of the spell, so that the origin is always zero. 

Lines 53-59 repeat the hazard model statement.  Note the “timemarks = ;” specification, 
which was not in our control file.  The timemarks statement is optional.  It is needed only when 
the model contains time-varying covariates; see below. 

Lines 63-72 provide summary statistics on the duration of the hazard spells that contribute to 
the model.  For noncensored spells, aML summarizes the lower bound, the upper bound, as well as 
the width of the event window.  For censored spells, it summarizes the length of the spells.  It also 
states how many spells are censored and how many noncensored.  Please check that these statistics 
match those in your data, especially when working with complicated multilevel, multiprocess data. 

The remainder of the output file contains iteration-by-iteration results of the optimization 
process.  Their interpretation is discussed above in Section 2.1.  Typing “mktab div1” from the 
command line presents the results in a user-friendly format: 

dur0-1 1.7334 *** 
 (0.5168) 
dur1-4 0.1011 * 
 (0.0524) 
dur4-15 -0.0458 *** 
 (0.0120) 
dur15-25 -0.0197 
 (0.0171) 
dur25+ -0.1315 *** 
 (0.0207) 
Constant -5.6546 *** 
 (0.4684) 
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heblack 0.0840 
 (0.1432) 
mixrace 0.4323 *** 
 (0.1525) 
dropout -0.2458 *** 
 (0.0726) 
college -0.2946 *** 
 (0.0993) 
heolder -0.4765 ** 
 (0.2191) 
sheolder 0.3891 
 (0.2764) 
  
ln-L -5916.01 

The significance asterisks, ‘*’, ‘**’, and ‘***’, indicate significance at 10, 5, and 1 percent, 
respectively.  Note that the log-hazard increases sharply during the first year after the wedding,11 
continues to increase—though only significant at the 10 percent level and at a more moderate 
pace—until the fourth anniversary; decreases moderately until the fifteenth anniversary; decreases 
very slightly for the next ten years, and continues to decrease thereafter.  This pattern is simulated 
in the figure on page 45.  The estimated covariates indicate that race has little effect by itself, but 
mixed-race couples are more likely to divorce; high school drop-outs and college graduates tend to 
be in more stable marriages than high school graduates (the omitted category); and marriages in 
which the husband is substantially older than the wife are more stable. 

2.4.4. Time-varying covariates 

Now consider a hazard process in which one or more covariates change value during the spell, 
but are constant over intervals within the spell.  These value changes must be discrete, i.e., the 
covariates must jump from one value to another at a point in time.  Variables that change 
continuously over the duration of the spell (such as age and calendar time) should be captured 
using duration dependencies, i.e., splines.  Baseline hazard patterns in aML may consist of as 
many duration dependencies as desired to capture variables that change continuously.  Covariates 
that are constant within intervals of time but change between intervals are “time-varying” 
covariates. 

Time-varying covariates are implemented in aML as an additional data level.  For example, a 
marriage may be a level 1 unit, and an interval a level 2 unit.  There may be any number of level 2 

                                                           
11 The rate of increase is 1.7319 per year, i.e., the hazard after one year is exp 1.73 5.65a f =  times the 

hazard at the time of the wedding.  For moderate slopes, such as -0.0464 per year between the fourth and the 
fifteenth anniversary, the coefficients may be interpreted as approximate percentage change, i.e., a decline of 
approximately 4.64 percent per year: 100 0 0464 1 4 64* exp . .− − ≈ −a fb g  percent. 
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units within a level 1 (and any number of level 3 units within a level 2 unit, et cetera).  Level 1 
variables may include the spell outcomes (one censor and two duration variables), as well as 
variables that are not time-varying, such as husband’s and wife’s education, race, age difference, 
et cetera.  Level 2 variables may include variables that change during the spell, such as the number 
of children that the couple has. 

! 
Concept:  Multilevel Data 

When data contain multiple units of interest that are nested, they naturally fall into a 
multilevel structure or hierarchy.  For example, a family consists of several persons; 
every person has held zero or more jobs; and the data contain zero or more (annual) 
records of the wage rate on each job.  aML numbers these levels “top-down,” i.e., the 
largest unit (family) is level 1, the second (person) is level 2, the third level (job) is 
level 3, the fourth level (wage rate) is level 4, et cetera.  Note that some other 
multilevel software packages number their levels in the reverse order! 

To determine the effect of time-varying covariates on the timing of events, it is not only 
necessary to know what values the covariate takes on, we also need to know exactly when it 
changes to the next value.  In other words, not only the time-varying covariates, but also the “time 
marks” which define intervals need to be known. 

Consider again our divorce data, now including a time-varying variable, the number of 
children that is born during the couple’s marriage.  The time marks are equal to the children’s birth 
dates, measured relative to the wedding date.  We show two ways of writing out the data in ASCII 
format. 

Suppose that the most fertile couple in our data gave birth 16 times, and that all children's 
birth dates have been converted into years since the wedding and stored as variables time1-
time16.  In addition, variables numkid1-numkid16 contain the number of children that the 
couple has.  Typically, numkid1=0, numkid2=1, et cetera, but twins would increase the numkid 
series by two.  Most couples gave birth fewer than 16 times, so many of the time1-time16 and 
numkid1-numkid16 variables have missing values.  Consider an example: 

 

This couple married on March 16, 1978.  Their two children were born on April 15, 1980 and 
November 15, 1983.  They were last interviewed on July 15, 1994, at which time their marriage 
was still intact.  During the first interval, their number of children was zero (numkid1=0); at 
time1=2.08 years after the wedding, the wife gave birth to their first child, so that numkid2=1.  

16mar78 
wedding 

15apr80 
first birth 

time1 

15nov83 
second birth 

time2 

15jul94 
last survey 

time3 
numkid2=1 numkid3=2 numkid1=0 
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At time2=5.67 years after the wedding, a second child was born, so numkid3=2.  No more 
children were born until the end of the spell, time3=16.33 years after the wedding.  Variables 
time4-time16 and numkid4-numkid16 contain missing values.  (Missing and represented by a 
dot, “.”, in SAS, Stata, SPSS, et cetera.  aML does not accept missing values; we show below how 
to solve this.)  We create variable numint=3 to indicate how many intervals there are for this 
couple. 

We assign level 1 to each marriage and level 2 to each interval.  With multilevel data, the data 
are always written out at level 2, i.e., there is one record per level 2 unit (interval).  (Chapters 3 
and 10 explain the full implications of this rule.)  In a SAS data step, the data may be written out 
as follows:12 

array time(*)   time1-time16; 
array numkid(*) numkid1-numkid16; 
do i=1 to numint; 
   put id  
       weight censor lower upper hiseduc hereduc  
       heblack sheblack agediff 
       time(i) numkid(i); 
end; 

The first lines of the resulting ASCII file (divorce2.raw in the sample data) are: 

These lines correspond to five observations (five marriages).  The first variable on each line, the 
ID variable, indicates which records (intervals) belong together in the same spell.  The last two 
variables are time and numkids.  The first couple (id=9) thus had zero children from their 
wedding to 3.734 years after the wedding, and one child thereafter until 10.546 years after the 

                                                           
12 In Stata, you would need to create one Stata-observation for every level 2 unit (interval): 

reshape long time numkid, i(id) j(interval) 
drop if time==. 
outfile id weight censor ... agediff time numkid using filename 

 9 23 1 10.546 10.546 12 12 0 0 1.013  3.734 0 
 9 23 1 10.546 10.546 12 12 0 0 1.013 10.546 1 
11 23 1 34.943 34.943  3  3 0 0 0.687  0.767 0 
11 23 1 34.943 34.943  3  3 0 0 0.687 32.512 1 
11 23 1 34.943 34.943  3  3 0 0 0.687 34.943 2 
13 23 0  2.793  2.875  8  8 0 0 2.352  2.585 0 
13 23 0  2.793  2.875  8  8 0 0 2.352  2.875 1 
15 23 0 15.012 20.052  7  7 0 0 2.352 60.052 0 
33 17 1  1.418  1.418 12 10 0 0 0.830  1.418 0

censor lower upper time numkidsid 
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wedding, when they were last surveyed.  (We know they did not divorce because their third 
variable, censor, is equal to 1.)  The second couple (id=11) had one child 0.767 years after their 
wedding, and another after 32.512 years.  The third couple (id=13) had a child 2.585 years after 
the wedding.  Note that censor=0, lower=2.793, and upper=2.875, so they divorced 
sometime between 2.793 and 2.875 years after the wedding.  The fourth couple (id=15) remained 
childless until they divorced.  Only limited information was available on the date of divorce: it 
took place sometime between 15.012 and 20.052 years after the wedding.  The fifth couple 
(id=33) remained childless until their last survey date, 1.418 years after the wedding. 

Note that the first time mark is not zero.  All spells start at time to = 0 , so there is no need to 
explicitly write out that time mark.  Each time variable thus marks the end of its interval. 

Note that the highest time mark is always at least as large as the end of the spell (variable 
upper).  If this were not the case, aML would not know what the value of the time-varying 
covariate is between the highest time mark and the end of the spell. 

The ASCII data may be converted into aML format by the following raw2aml control file 
(divorce2.r2a): 

  1 input data file = divorce2.raw; 
  2  
  3 level 1 var = weight censor lower upper hiseduc hereduc heblack 
  4               sheblack agediff; 
  5 level 2 var = time numkid; 

In raw2aml control files that we have seen so far, variable lists were specified by a “var = 
...“ statement.  This is fine as long as there is only one level in the data.  Here, however, we have 
two levels, and we need to indicate what level each variable is. 

Note that time1-time16 and numkid1-numkid16 are (up to) 16 variables in the original 
data.  In the aML-formatted data, however, they are just one variable each (time and numkid).  
Instead of one SAS observation with 16 variables, we created one aML observation with up to 16 
level 2 units or “branches.”  

Before illustrating how to specify a hazard model with time-varying covariates in an aML 
control file, we present the likelihood function.  Consider a log-hazard process with time-varying 
covariates X(t): 

ln ( ) ( )h t T t X t= ′ + ′γ β b g , 
where we suppress the subscripts for both the individual and the spell.  Denote the baseline log-
hazard as the duration dependency part, ln ( ) ( )h t T t0 = ′γ , and the corresponding baseline survivor 
function by S t0b g .  Denote the points in time that mark intervals by t t tI0 1, , ,…b g , so that X tb g  is 

constant and equal to X t1b g  between t0  and t1 , jumps to a X t2b g  at t1 , remains constant between 

t1  and t2 , jumps to X t3b g , et cetera.  All t t tI0 1, , ,…b g  are measured relative to the beginning of 
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the spell, i.e., t0 0=  and tI  is equal to the total duration of the spell (the upper bound for 
noncensored spells).  The survivor function at various points in time is: 

S t

S t S t

S t S t
S t
S t

S t
S t
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The likelihood is as before: 

L
S t t
S t S t t tl u l u=

−
RS|T|
b g
d i d i

if the spell is censored at 
if the event occurred between  and .

;
 

We now specify the model, including the time-varying covariate (div2.aml): 

  1 option normweight = weight; 
  2  
  3 dsn = divorce2.dat; 
  4  
  5 define spline DurMar; nodes = 1 4 15 25; 
  6  
  7 define regressor set Getdiv; 
  8    var = 1 heblack (hiseduc<12) (hiseduc>=16) 
  9   (agediff>10) (agediff<-10) (heblack!=sheblack) 
 10   numkids; 
 11  
 12 hazard model; 
 13    censor=censor; duration=lower upper; timemarks=time; 
 14    model = durspline(origin=0, ref=DurMar) + 
 15       regset Getdiv; 
 16  
 17 starting values; 
 18  
 19 dur0-1      T    1.7333887636 
 20 dur1-4      T     .1011364705 
 21 dur4-15     T    -.0457769887 
 22 dur15-25    T    -.0197150656 
 23 dur25+      T    -.1314955828 
 24 Constant    T   -5.6545800935 
 25 heblack     T     .0840387419 
 26 mixrace     T     .4323170948 
 27 dropout     T    -.2457713662 
 28 college     T     -.294608909 
 29 heolder     T    -.4764981159 
 30 sheolder    T     .3891406844 
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 31 numkids     T      0 
 32 ; 

Note line 10, in which we add level 2 variable numkids to the list of regressors.  Regressor 
sets may contain any level variable, and expressions involving variables at different levels are also 
allowed.  (To be precise, all models require that variables in regressor sets must be at the same or 
higher, more aggregated level as the outcome variable.  Hazard models form an exception in that 
time-varying variables are allowed and must be one level lower than the outcome.  Variables at 
even lower levels would result in an error message, as it would not make sense to include such 
variables.) 

The hazard model specification contains a new statement:  “timemarks=time”.  If any 
regressor set that is used in a hazard model contains a time-varying variable, the timemarks 
statement is mandatory and indicates the points in time that separate intervals.  The timemarks 
statement specifies the name of a variable that is one level below the level of the censor and 
duration variables.  It may not be an expression.  Here, variables censor, lower, and upper are 
level 1 variables, whereas time is a level 2 variable.  The time marks variable measures time 
relative to the beginning of the spell.  Its values must therefore be strictly positive and increasing 
from subbranch to subbranch.  Each time variable marks the end of its interval, not the beginning.  
The value of the last time mark must be at least as large as the end of the spell, because otherwise 
aML would not know what the value of the time-varying covariate is between the highest time 
mark and the end of the spell. 

The starting values of “div2.aml” are the converged values of “div1.aml”.  (Recall that 
the starting values in “div1.aml” are conveniently updated with the converged estimates in 
“div1.out” by typing “update div1”; see Section 2.1.7.)  The newly added variable, 
numkids, is initialized to zero in the starting values statement.  Running aML results in 
“div2.out”.  We compare the results of “div1.out” and “div2.out” by typing “mktab div1 
div2” (see Section 2.1.8): 

 div1 div2 
   
dur0-1 1.7334 *** 1.7519 *** 
 (0.5168) (0.5167) 
dur1-4 0.1011 * 0.1280 ** 
 (0.0524) (0.0527) 
dur4-15 -0.0458 *** -0.0351 *** 
 (0.0120) (0.0123) 
dur15-25 -0.0197 -0.0195 
 (0.0171) (0.0171) 
dur25+ -0.1315 *** -0.1305 *** 
 (0.0207) (0.0208) 
Constant -5.6546 *** -5.6475 *** 
 (0.4684) (0.4684) 
heblack 0.0840 0.0450 
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 (0.1432) (0.1444) 
mixrace 0.4323 *** -0.2778 *** 
 (0.1525) (0.0725) 
dropout -0.2458 *** -0.2981 *** 
 (0.0726) (0.0994) 
college -0.2946 *** -0.5005 ** 
 (0.0993) (0.2187) 
heolder -0.4765 ** 0.3822 
 (0.2191) (0.2732) 
sheolder 0.3891 0.4972 *** 
 (0.2764) (0.1534) 
numkids  -0.1109 *** 
  (0.0266) 
   
ln-L -5916.01 -5905.82 

Adding variable numkids changes the estimates of other covariates and the baseline pattern 
only little.  The number of children born while the couple is married has a negative effect on the 
hazard of divorce, i.e., children appear to stabilize marriages.13 

                                                           
13 We ignored the potential endogeneity of children in this discussion.  If it is the case that couples with 

marital problems tend to postpone childbearing, the number of children is endogenous, and the above 
estimate overstates the actual effect of children on marital stability.  One way to deal with the endogeneity 
issue is to model fertility and marital disruption jointly.  This was the subject of the first journal article 
demonstrating simultaneous hazard models (Lillard, 1993). 
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2.5. Binomial Model 
This section illustrates the steps that are required to estimate a simple binomial model.  The 

main steps to estimate binomial models are similar or identical to those for probit models, as 
explained in Section 2.1.  We therefore only highlight differences between estimation of probit 
and binomial models.  If you have not read Section 2.1 yet, please do so now.   

If outcome Y follows a binomial distribution, the probability distribution is: 

Pr Y
n
x

p px n xb g b g=
F
HG
I
KJ − −1  

where n is the number of independent trials (also known as exposure), p is the probability in each 
trial that the outcome will be a success and x is the number of successes.  Both n and x must be 
variables in the data; probability p may be estimated as a parameter, or it may be a function of 
regressor sets and residuals (heterogeneity components).   

2.5.1. The Probability is a Constant 

We begin with the simplest possible binomial model in which p is a constant to be estimated.  
Among the sample files is “count.raw” with raw data on 1,000 observations.  It has just one 
level and contains variables n, x1, x2, y1, and y2.  As controlled by “count.r2a”, raw2aml 
converted the data into “count.dat”.  Exposure variable n ranges from zero to 14, as shown in 
data summary file “count.sum”; our outcome of interest is y1 with a range from zero to 10.  
aML control file “count1.aml” contains the following. 

  1 option title = "Binomial with constant probability"; 
  2 dsn = count.dat; 
  3  
  4 define parameter Prob; range = (0,1); 
  5  
  6 binomial model; 
  7    outcome = y1; 
  8    exposure = n; 
  9    probability = linear(par Prob); 
 10  
 11 starting values; 
 12  
 13 p   T  .5 
 14 ; 

Line 1 contains an optional title.  It contains spaces and must therefore be delimited by single 
or double quotes. 
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define parameter Prob; range = (0,1); 

Line 4 introduces a new type of building block, the parameter.  A parameter is a scalar with a 
variety of purposes.  It may be used to estimate a constant, as in this example, or as an intercept, or 
in interaction terms, et cetera.  The name of a parameter may not exceed twelve characters.  The 
parameter in this example contains the optional range specification.  By default, parameters may 
take on any number on the real line.  Optionally, their range may be restricted to strictly positive 
(0,Inf), strictly between 0 and 1 (0,1), or strictly less than one in absolute value (-1,1).  Since we 
will use the parameter to represent a probability, we restrict the range to (0,1).  Without this range 
restriction, aML’s optimization search may venture into illegal values. 

binomial model; 
   outcome = y1; 
   exposure = n; 
   probability = linear(par Prob); 

Lines 6–9 specify the binomial model.  The count outcome must be specified first.  Next is the 
exposure variable, which must be at the same level as the outcome.  The probability statement 
determines the structure of the equation for the probability.  In this case, the probability is simply a 
parameter, i.e., there is no transformation of any type.  (See below for alternatives.)  Instead of 
specifying that the probability is simply equal to parameter Prob, we need to state that it is 
linearly related (one-to-one) to parameter Prob.  Indeed, “par Prob” (short for “parameter 
Prob”) is a reference to previously defined parameter Prob; the probability may also be a linear 
combination of parameters, regressor sets, and/or residuals (heterogeneity components).   

In this illustration, the entire model only contains one parameter, the probability.  We 
initialize it halfway on the permissible range.  File “count1.out” contains the output, repeated 
here in part. 

  1 ======================================================================== 
  2 =                  Binomial with constant probability                  = 
  3 ======================================================================== 
 
 et cetera... 
 
 25 The following parameters, vectors, and matrices have been defined: 
 26  
 27 define parameter Prob;  /* coefficient name: p */ 
 28    range=(0,1); 
 29  
 30  
 31 The following models have been specified: 
 32  
 33 binomial model; 
 34    outcome = y1; 
 35    exposure = n; 
 36    prob = linear(par Prob); 
 37  
 38    Summary statistics of the outcome and selected variables: 
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 et cetera... 
 
230 ====================================================================== 
231 =                 ESTIMATION CONVERGED SUCCESSFULLY                  = 
232 =                       RESULTS OF ESTIMATION                        = 
233 ====================================================================== 
234  
235 Convergence based on: 
236    Weighted gradient norm:         .0718463 < .1 
237    Relative function improvement:  7.22E-06 
238    Gradient norm:                  13.64425 
239    Relative parameter change:      .0041449 
240  
241 ====================================================================== 
242  
243 Log Likelihood:  -1424.3868 
244                                           BHHH-based, non-corrected 
245   Parameter    Free?     Estimate         Std Err        T-statistic 
246  
247   1  p           T     .29362694189     .00526568481       55.7623 
248  
249 ====================================================================== 
250  
251 Elapsed clock time is 3 seconds. 

Note that the title is repeated in lines 1-3.  Lines 25-28 restate the definition of the parameter.  
Its name is Prob; the associated parameter coefficient that is estimated was labeled “p” in the 
starting values.  Lines 31-36 repeat the model specification, followed by tabulations of the 
outcome and the exposure variables (not shown).  The model converged with a probability 
estimate of 0.294.  That value could also have been found from the raw data: the ratio of the 
means of variables y1 and n, as found in data summary file “count.sum”, is 2.013/6.846=0.294.  
We could have saved ourselves the trouble of estimating this very simple model. 

2.5.2. The Probability is a Function of Covariates 

In a slightly more complicated case, the probability is assumed to be a function of covariates 
in the data.  Since a probability must be between zero and one, we use a logistic or cumulative 
normal transformation to link covariates to the binomial probability: 

p
X

=
+ − ′

1
1 exp βb g  

 or    p X= ′Φ βb g . 
Control file “count2.aml” contains an example in which the probability is assumed to be 

related, after a logistic transformation, to covariates x1 and x2: 
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  1 dsn = count.dat; 
  2  
  3 define regressor set BetaX; var = 1 x1 x2; 
  4  
  5 binomial model; 
  6    outcome = y2; 
  7    exposure = n; 
  8    probability = logistic(regset BetaX); 
  9  
 10 starting values; 
 11  
 12 Constant    T    .5178432 
 13 x1          T     0 
 14 x2          T     0 
 15 ; 

Line 8 specifies that the probability is a logistic transformation of regressor set BetaX.  We 
could have specified “probability = probit(regset BetaX)” and used the cumulative 
normal transformation; the results would have been very similar.   

We initialized the intercept at 0.5178432 (line 12).  Summary file “count.sum” shows an 
average probability of outcome y2 of 4.29/6.846=0.627; the log-odds of that average is 
log(0.627/(1-0.627))=0.5178432, which is the optimal value for the intercept if other regressors 
are zero.  In a simple model such as this one, the penalty for specifying poor starting values tends 
to be small.  (If we had initialized all parameters to zero, it would have taken one additional 
iteration to converge, i.e., a fraction of a second.)  However, in more complicated models, careful 
selection of good starting values is often critical. 
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2.6. Poisson Model 
This section illustrates the steps that are required to estimate a simple Poisson model.  The 

main steps to estimate Poisson models are similar or identical to those for probit models, as 
explained in Section 2.1.  We therefore only highlight differences between estimation of probit 
and Poisson models.  If you have not read Section 2.1 yet, please do so now.   

Poisson regression models may be appropriate for the analysis of count data, that is, outcomes 
that may take on values 0, 1, 2, …  Unlike binomial count models, there is no upper bound on the 
potential outcome.  The model was first derived by Siméon-Denis Poisson in 1837 (Poisson, 
1837). 

The basic specification of the Poisson regression model is as follows.  Consider an incidence 
rate iλ  for observation i.  The probability distribution of outcome variable iY  is given by: 

( )Pr
!

i iy
i

i i
i

eY y
y

λ λ−

= = . 

In its most basic form, aML follows the usual parameterization of the incidence rate:14  

( )expi iXλ β ′= . 

The incidence rate is equal to the expected number of occurrences per observation.  If 
observations vary in their exposure (e.g., number of periods over which events accumulate), the 
per-observation incidence rate iλ  is equal to the product of the exposure iE  and the per-period 
incidence rate: 

( )expi i iE Xλ β ′= . 

Model Specification and Estimation 

Consider a model of shipping accidents (McCullagh and Nelder, 1983).  We are interested in 
the accident rate of ships of various types and vintages over two operation periods.  Sample data 
set Chapter2\ships.dat contains variables accident (number of shipping accidents over an 
observation period), months (number of service months), lnmonths (logarithm of months), 
shiptype (type of ship, coded 1-5), indicator variables for the year in which the ships were 
constructed (1960-64, 1965-69, 1970-74, 1975-79), and indicator variables for the operation 
period (1960-74, 1975-79).  The number of observations in the data is 34. 

                                                           
14 The multilevel extension allows for one or more (integrated) residuals, and of course all types of 

interactions are supported.  See Section 13.11. 
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Naturally, the more ships are sailing, the higher the expected number of accidents.  The 
exposure iE  is thus given by variable months.  The model may be specified as follows 
(Chapter2\ships1.aml): 

  1 option title = "Poisson ship accidents example"; 
  2 dsn = ships; 
  3  
  4 define regset BetaX; 
  5    var = 1 (shiptype==2) (shiptype==3) (shiptype==4) (shiptype==5) 
  6          year6569 year7074 year7579 oper7579; 
  7  
  8 poisson model; 
  9    outcome = accident; 
 10    exposure = months; 
 11    incidence = exp(regset BetaX); 
 12  
 13 starting values; 
 14  
 15 Constant  T   -6.1300899  /* log(mean accident) - log(mean months)) */ 
 16 Type2     T    0 
 17 Type3     T    0 
 18 Type4     T    0 
 19 Type5     T    0 
 20 Year6569  T    0 
 21 Year7074  T    0 
 22 Year7579  T    0 
 23 Oper7579  T    0 
 24 ; 

The Poisson model specification is very straightforward.  The outcome is variable accident, 
exposure is variable months, and the per-period incidence rate is given by regressor set BetaX.  
The effective (per-observation) incidence rate iλ  is thus months*exp(regset BetaX).  The 
exposure statement is optional.15 

Notice the starting value of the intercept, -6.1300899.  Poisson models tend to be quite 
sensitive to good starting values.  Around poor starting values, the likelihood surface is flat and 
the search may fail.  We therefore recommend putting a little effort into finding a good starting 
value for the intercept.  As explained in Section 6.8, the optimal intercept is equal to the difference 

                                                           
15 Since ( ) ( )exp exp lni i i i iE X E Xλ β β′ ′= = + , we could equivalently specify the model by including 

log-exposure as a variable (regressor with coefficient fixed to one) in the incidence equation: 

poisson model; 
   outcome = accident; 
   incidence = exp(lnmonths + regset BetaX); 

where lnmonths is a data variable that is equal to log(months).  (Variable transformations are not permitted 
among building blocks.) 
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of the logarithms of the mean outcome and the mean exposure, ( ) ( )log logY E− .  These means 

may be found in the data summary file, ships.sum.. 

The parameter estimates are: 
Constant -6.4043 *** 
 (0.4297) 
Type2 -0.5426 
 (0.3849) 
Type3 -0.6912 
 (0.4236) 
Type4 -0.0675 
 (0.3904) 
Type5 0.3304 
 (0.3895) 
Year6569 0.6951 *** 
 (0.2219) 
Year7074 0.8115 *** 
 (0.2424) 
Year7579 0.4319 
 (0.3013) 
Oper7579 0.3876 ** 
 (0.1578) 
  
Ln-L -68.42 
  
NOTE:  Asymptotic standard errors in parentheses; 
       Significance: '*'=10%;  '**'=5%;  '***'=1%. 

It took 27 iterations to find these estimates.  This strikes us as very many—the likelihood of 
the Poisson model is globally concave and the search should not take that many iterations.  The 
problem is that the default search direction is quite poor.  The search direction involves the matrix 
of second derivatives (Hessian matrix), which by default is approximated with the BHHH 
algorithm.  This approximation can be poor in small samples, such as the sample under study 
(N=34).  A solution is to specify “option numerical search” (page 270), as we have done in 
Chapter2\ships2.aml.  This option computes the Hessian matrix and thus the search direction 
more accurately.  Indeed, the program then needs only five iterations to converge.  Naturally, the 
default (BHHH-based) and numerical search algorithms result in the same parameter estimates.16  
However, the reported standard deviations and significance levels differ.  The calculation of 
standard deviations also involves the Hessian matrix and the default (BHHH-based) standard 
errors can therefore be inaccurate in small samples.   

                                                           
16 Small deviations may result from an insufficiently strict convergence criterion.  aML's default 

criterion is that the weighted gradient norm be less than 0.1.  This criterion is designed to accurately pin 
down precisely estimated parameters but pays less attention to imprecisely estimated parameters.  See 
“option converge” on page 276. 
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Searching on the basis of numerically computed Hessian matrices is computing-intensive, 
because each numerical Hessian requires k gradient evaluations, where k is the number of 
parameters.  For some applications (with few observations but many outcomes per observation), 
this may be prohibitively time-consuming.  In such cases, you may want to search with the default 
BHHH-based Hessian matrices, but request a one-time numerical evaluation of the Hessian upon 
convergence to accurately calculate standard errors.  This is done with “option numerical 
standard errors” (page 271). 

! When the number of observations is small, the search direction may be poor and the 
reported standard errors of parameter estimates inaccurate.  “Option numerical 
search” remedies the former; “option numerical standard errors” the 
latter. 

The difference in standard errors can be substantial.  For example, “mktab ships1 
ships2” shows the following: 

 ships1 ships2 
   
Constant -6.4043 *** -6.4029 *** 
 (0.4297) (0.2175) 
Type2 -0.5426 -0.5447 *** 
 (0.3849) (0.1776) 
Type3 -0.6912 -0.6888 ** 
 (0.4236) (0.3290) 
Type4 -0.0675 -0.0743 
 (0.3904) (0.2906) 
Type5 0.3304 0.3211 
 (0.3895) (0.2357) 
Year6569 0.6951 *** 0.6958 *** 
 (0.2219) (0.1497) 
Year7074 0.8115 *** 0.8175 *** 
 (0.2424) (0.1698) 
Year7579 0.4319 0.4450 * 
 (0.3013) (0.2332) 
Oper7579 0.3876 ** 0.3839 *** 
 (0.1578) (0.1183) 
   
ln-L -68.42 -68.41 
   
NOTE:  Asymptotic standard errors in parentheses; 
       Significance: '*'=10%;  '**'=5%;  '***'=1%. 
 
NOTE:  The standard errors are not all consistently computed: 
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       Column 1 (ships1) is BHHH-based 
       Column 2 (ships2) is based on a numerical Hessian 

In this case, all BHHH-based standard errors are larger than the more accurate numerical 
ones.  This is a coincidence; BHHH-based approximate standard errors may be over- or 
underestimates. 
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2.7. Negative Binomial Model 
 

! Attention former users of aML Version 1: 

There are many ways to parameterize negative binomial models.  Versions 1 and 2 
follow different parameterizations.  See Section 13.12.1 for backward compatibility of 
Version 2. 

 

This section illustrates the steps that are required to estimate a simple negative binomial 
model.  The main steps to estimate negative binomial models are similar or identical to those for 
probit and Poisson models, as explained in Sections 2.1 and 2.6.  We therefore only highlight 
differences between estimation of Poisson and negative binomial models.  If you have not read 
Sections 2.1 and 2.6 yet, please do so now.   

Much like the binomial and Poisson models, the negative binomial model applies to processes for 
which the outcomes are counts.  As with the Poisson distribution, the negative binomial outcome 
is non-negative, integer-valued, and has no upper bound.  The probability distribution is: 

( ) ( )
( ) ( ) ( )

11

1
Pr 1

1
yy

Y y
y

α α

α

θ θ
Γ +

= = −
Γ + Γ

, 

where Γ ⋅b g  denotes the Gamma function and 

( )
1

1 expE x
θ

α β
=

′+
. 

E is the “exposure” and α  is the “dispersion.”  The dispersion must be strictly positive and may 
be parameterized.  The (observable part of the) incidence rate is ( )exp xβ ′ .  An outcome may be 

the result of exposure to multiple periods.  The overall incidence rate is thus ( )expE xβ ′ .  
Heterogeneity is allowed in θ ; see Section 13.12. 

Model Specification and Estimation 

Most applications in the literature estimate dispersion α  as a parameter that is the same for 
all observations.  To illustrate aML’s broader capabilities, consider the following artificially 
generated data.  Data set Samples\Chapter2\negbin.dat (created from negbin.raw and 
converted by raw2aml using control file negbin.r2a) contains outcome variable “count” and 
exposure variable “exposure”.  The incidence is a function of variables “x1” and “x2”, the 
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dispersion is a function of variables “x3” and “x4”.  Let’s first estimate the standard model in 
which the dispersion is constant across observations and the incidence rate is a function of 
covariates (negbin1.aml): 

  1 dsn=negbin; 
  2 option numerical search; 
  3  
  4 define regset BetaX;  var = 1 x1 x2; 
  5 define parameter Alpha;  range=(0,Inf); 
  6  
  7 negative binomial model; 
  8    outcome = count; 
  9    exposure = exposure; 
 10    dispersion = par Alpha; 
 11    incidence = exp(regset BetaX); 
 12  
 13 starting values; 
 14  
 15 Constant   TT    0 
 16 x1         FT    0 
 17 x2         FT    0 
 18 Alpha      TT    1 
 19 ; 

Line 2 shows a new statement: 

option numerical search; 

This statement affects the search direction.  aML’s (Gauss-Newton) likelihood maximization 
algorithm searches on the basis of the vector of first derivatives and the matrix of second 
derivatives of the log-likelihood with respect to estimated model parameters (see Section 13.1.4).  
By default, second derivatives are approximated using the BHHH algorithm (Berndt et al., 1974).  
This approximation is good for large samples, but may be poor in finite samples.  We have found 
that it is particularly poor for negative binomial models.  The “option numerical search” 
instructs aML to calculate second derivatives as numerical derivatives of analytically computed 
first derivatives.  This calculation requires substantially more operations than the BHHH 
algorithm, but is typically still very fast and can lead to convergence in fewer iterations.  See 
Section 13.1.4 for details. 

The negative binomial model specification is straightforward.  Line 8 specifies the outcome 
variable (or expression).  Line 9 specifies the exposure variable (or expression), E.  This statement 
is optional; by default, E=1. 

Line 10 specifies the dispersion parameter, α .  Line 5 defined it as being strictly positive to 
ensure that its value would not become zero or negative during the search.  Equivalently, we could 
have defined a unrestricted parameter lnAlpha and specified: 

dispersion = exp(par lnAlpha); 
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In other words, dispersion may be specified as either “dispersion = ...” or “dispersion = 
exp(...)”.  Since we are interested in α , not ( )ln α , we opted for the former.  An example of 
the latter follows below. 

Line 11 specifies the incidence rate.  It must be positive and must always be specified as an 
exponentiated function of building blocks.  In other words, aML uses the log-link function. 

Lines 15-18 specify starting values.  We start the incidence parameters at zero and the 
dispersion parameter at one.  We first let the incidence intercept and the dispersion parameter 
settle in before estimating other incidence coefficients. 

Next, we allow the dispersion to be a function of regressors (negbin2.aml): 

  1 dsn=negbin; 
  2 option numsearch; 
  3  
  4 define regset BetaX;  var = 1 x1 x2; 
  5 define regset AlphaX; var = 1 x3 x4; 
  6  
  7 negative binomial model; 
  8    outcome = count; 
  9    exposure = exposure; 
 10    dispersion = exp(regset AlphaX); 
 11    incidence = exp(regset BetaX); 
 12  
 13 starting values; 
 14  
 15 Constant   TT    0 
 16 x1         FT    0 
 17 x2         FT    0 
 18 Constant   TT    .87546874 
 19 x3         FT    0 
 20 x4         FT    0 
 21 ; 

Line 10 specifies dispersion as  

dispersion = exp(regset AlphaX); 

This specification ensures that the dispersion is always positive.  If you like, you could try: 

dispersion = regset AlphaX; 

and hope that the search does not venture into negative territory.  (Try it:  all goes well, albeit with 
one misstep that aML is able to ignore.)  Of course, the two specifications are not identical.  In the 
first case, dispersion terms enter multiplicatively, ( )exp xα′ , in the second additively, xα′ . 

The model in which dispersion is a constant (negbin1.aml) estimated ˆ 2.4α =  (not shown).  
We therefore initialized the dispersion intercept at ( )ln 2.4 0.875=  (line 18). 
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2.8. Ordered Probit and Logit Models 
This section illustrates the steps that are required to estimate a simple ordered probit or 

ordered logit model.  The main steps to estimate these types of models are similar or identical to 
those for probit or logit models, as explained in Sections 2.1 and 2.2.  We therefore only highlight 
differences between estimation of probit/logit and ordered probit/logit models.  If you have not 
read Sections 2.1 and 2.2 yet, please do so now.   

Ordered probit models are probit models with multiple categorical outcomes that are ordered.  
They are sometimes known as normal interval models.  Examples are include scores on such 
questions as “Would you say your health is poor, fair, good, very good, or excellent?”  The five 
possible answers are naturally ordered.  They are ordinal, not cardinal, i.e., nothing is implied by 
the numerical labels on categories, except their order.  For example, it need not be the case that the 
difference between poor and fair is the same as between very good and excellent.  The idea behind 
an ordered probit model is that some underlying propensity (here, a continuous latent health status 
measure) falls in certain categories.  These categories are delimited by thresholds.  For example, 
four thresholds result in five possible categories.  If the propensity is distributed normally, the 
ordered probit is applicable; if the propensity follows the logistic distribution, the ordered logit is 
applicable.   

Formally, an ordered probit is defined as follows.  Consider outcome y which may take n+1 
ordered outcomes 0 through n.  The outcome is determined by propensity y* : 

y X u* = ′ +β , where y

y
y
y

n yn

=
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Note that the simple probit is a special case with n = 1  and τ 1 0= .  The likelihood function is: 

L
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The ordered logit is defined analogously.  Its residual u follows the logistic distribution, so its 

likelihood function involves not Φ τ β σi uX− ′b gc h  but F Xiτ β− ′b g = 1
1

+ − − ′
−

exp τ βi Xb gc he j , 

i n= 1,..., . 
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The data format and control file syntax of ordered probit and logit models depends on whether 
the thresholds are unknown (and to be estimated) or known (often in the form of data variables).  
Most commonly, the thresholds are unknown and need to be estimated.  This case is discussed 
here.  See Section 5.2 for ordered probit and logit models with known thresholds. 

Model Specification and Estimation 

Most software packages that support ordered probit models require that the outcome falls in 
one and only one category.  For example, health status must be either poor, fair, good, very good, 
or excellent, and there is no room for responses that span multiple categories.  aML supports the 
straightforward extension that allows responses to span more than one category.  We first illustrate 
the case in which all outcomes fall in a single category.  The example is an ordered probit model, 
but you may substitute the word “logit” for “probit” to specify ordered logit models.  Their 
differences are the same as between simple probits and logits. 

aML requires that all ordered outcomes are contiguous integer-valued numbers.  This may 
seem self-evident, but the only conceptual requirement is that the outcomes are ordered.  Health 
outcomes may thus be coded from 0 (poor) to 4 (excellent), or from 1 (poor) to 5 (excellent), or 
any other set of contiguous integers.  The model statement differs slightly depending on the 
coding scheme you choose.  Suppose you coded health status (health) as: 

health =

0
1
2
3
4

if health is poor;
if health is fair;
if health is good;
if health is very good;
if health is excellent.

R

S
|||

T
|||

 

There are five categories, so we need four threshold parameters, τ 1  through τ 4 , to map the 
underlying propensity (continuous health concept) into five categories: 

We added τ 0 = −∞  and τ 5 = ∞ ; these are not explicitly present, but greatly help in specifying 
the model correctly: 

define vector Taus; dim=4; 
 
ordered probit model; 
   outcomes = health health+1; 
   thresholds = Taus; 
   model = <building blocks>; 

poor fair good very good excellent 

τ 1 τ 2 τ 3 τ 4τ 0 = −∞ τ 5 = ∞
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Thresholds are to be estimated and must thus be defined as a vector building block.  A vector 
is simply a set of parameters.  Its dimension specification (dim=4) determines the number of 
parameters in the vector.  By default, aML restricts vector elements to be strictly increasing, which 
is precisely what we want for ordered probit thresholds.  For full details see Section 13.2.4.   

The outcome of an ordered probit model is specified in the form of two variables or 
expressions.  The reason for this seemingly redundant specification is in aML’s ability to handle 
outcomes that span multiple categories; see below.  The two variables or expressions indicate the 
subscript numbers of the thresholds between which the outcome lies.  For example, as shown in 
the figure above, health is classified as fair (health=1) when the health propensity is between τ 1  
and τ 2 .  the outcomes must thus evaluate to 1 and 2, which is achieved by “outcomes = 
health health+1”.  Note that τ 0 = −∞  and τ 5 = ∞  are needed to deal with the extreme 
categories, poor (between τ 0 = −∞  and τ 1 ) and excellent (between τ 4  and τ 5 = ∞ ). 

If we had coded the health outcomes not from 0 to 4, but from 1 (poor) to 5 (excellent), the 
outcomes would need to be specified as “outcomes = health-1 health”.  You are, of 
course, free to create two data variables to indicate the outcome.  The lowest value of the lower 
outcome must be zero and the highest value of the upper outcome must be equal to the number of 
categories. 

! 
If there are n categories in the data, you need a vector with dimension n-1 to represent 
the thresholds, τ 1  through τ n−1 .  The outcome in an ordered probit or logit model is 
specified by two variables or expressions which evaluate to the subscript numbers of 
the thresholds between which the outcome lies.  The j-th category lies between τ j−1  
and τ j ; the lowest category lies between implicitly defined τ 0 = −∞  and τ 1 ; the 
highest category between τ n−1  and implicitly defined τ n .  In other words, the lowest 
value of the lower outcome must be zero and the highest value of the upper outcome 
must be equal to the number of categories. 

A simple probit model requires two normalizations; a zero threshold and a standard normally 
distributed residual.  Section 5.1 below shows how to specify non-zero thresholds and non-
standard residuals.  Similarly, an ordered probit model requires that you either do not specify an 
intercept, or fix one threshold to any fixed value.  In other words, you cannot estimate both all 
thresholds and an intercept.  (Try it; aML will keep one parameter at its initial value.)  Also, if you 
do not specify a (non-integrated) residual among the model’s building blocks, aML assumes that 
you want an iid N(0,1) residual. 

Outcomes May Span Multiple categories 

aML also supports ordered probit and logit models in which the outcome may span several 
categories.  For example, an ordered outcome may take on values 0 through 4 and we wish to 
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estimate an ordered probit model with four thresholds.  However, for some observations the 
outcome may be either 3 or 4.  The likelihood is: 

L X X X
X

= − ′ − − ′ + − − ′
= − − ′

Φ Φ Φ
Φ
τ β τ β τ β

τ β
3 2 3

2

1
1
b g b gm r b gm r
b g . 

More generally, the probability that an outcome ( y n= −0 1,..., ) is in the interval (i, ..., j) is 

L P i y j X Xj i= ≤ ≤ = − ′ − − ′+( ) Φ Φτ β τ β1d i b g , 
where implicitly τ 0 = −∞  and τ n = ∞ .  The model is specified analogously to the case where 
outcomes could only be in a single category, as discussed above.  However, since the outcome 
may lie between two thresholds that are not contiguous, the outcome must be specified more 
generally: 

ordered probit model; 
   outcomes = lowvar upvar; 
   thresholds = <vectorname>; 
   model = <building blocks>; 

where lowvar and upvar are data variables (or expressions) which indicate the threshold 
numbers between which the outcome lies.  The difference between those variables, upvar-
lowvar, is equal to the number of categories between which the outcome lies. 

As mentioned above, Section 5.2 discusses how to estimate ordered probit or ordered logit 
models when the thresholds are known and data-dependent.  Sections 13.6 and 13.8 contain many 
more details on ordered probit and ordered logit models, respectively. 
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2.9. Tobit Model 
This section illustrates the steps that are required to estimate a simple tobit (censored normal 

density) model.  The main steps to estimate tobit models are similar or identical to those for probit 
and continuous models, as explained in Sections 2.1 and 2.3.  We therefore only highlight 
differences between estimation of probit or continuous models on the one hand and tobit models 
on the other.  If you have not read Sections 2.1 and 2.3 yet, please do so now.   

In some models, one only observes a continuous outcome if that outcome falls in a certain 
range.  If the outcome is outside that range, there are two possibilities.  First, one may not observe 
anything about those cases, in which event the truncated normal model is appropriate (Section 
5.3).  Second, one may observe everything about those cases, except for the outcome.  In that 
event, the censored normal density model, better known as the Tobit model (Tobin 1958; Judge et 
al., 1988) applies. 

Consider an analysis of the number of hours worked in a year.  If we were to analyze current 
workers, we would only observe individuals with strictly positive number of hours worked.  
Nothing would be known about individuals who do not work in the formal sector.  Under those 
circumstances, a truncated normal model may be appropriate.  If instead we have a sample of both 
workers and non-workers, we observe both positive and zero hours worked, and a Tobit model 
may apply.  We illustrate a Tobit model on such data. 

We use the “Samples\Chapter2\work.dat” data.  The variable of interest, annual hours 
worked, is “hours”.  It may be zero or positive.  Other variables of interest are education (coded 
as educ=1 for individuals without a high school diploma, educ=2 for high school graduates, and 
educ=3 for college graduates) and the number of young children that the respondent has at home, 
children.  There is only one record per person. 

The model is: 

h
x v

x v x v
=

′ + ≤
′ ′ + >
RST
0 0

0
if (the individual does not work);

+ if (the individual does work).
β

β β
 

The likelihood function is: 

if  0;

if  0,

v

v

x h
L

h x h

β
σ

βφ
σ

  ′−
Φ ≤  

  = 
 ′− >   

 

where Φ  and φ  denote the cumulative normal probability function and the normal density 
function, respectively.   
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Model Specification and Estimation  

The following control file (Samples\Chapter2\tobit.aml) defines the building blocks 
and specifies the tobit model: 

  1 dsn = work; 
  2  
  3 define regressor set BetaX; 
  4    var = 1 (educ==1) (educ==3) children; 
  5  
  6 define normal distribution; dim=1; 
  7    name=v; 
  8  
  9 tobit model; 
 10    outcome = hours; 
 11    lower limit=0; 
 12    model = regset BetaX + res(draw=1, ref=v); 
 13  
 14 starting values; 
 15  
 16 Constant   T    1377 
 17 dropout    T    0 
 18 college    T    0 
 19 children   T    0 
 20 SigmaV     T    681 
 21 ; 

Line 1 specifies the input data set, as created by raw2aml and discussed in Section 2.1.   

Lines 3-4 define a regressor set which contains the explanatory covariates.  Note that we use 
variable transformations.  Education categories 1 and 3 denote high school drop-outs and college 
graduates, respectively.   

Lines 6-7 define a univariate normal distribution, as discussed above for continuous models 
(Section 2.3).   

Lines 9–12 specify the model: 

tobit model; 
   outcome = hours; 
   lower limit=0; 
   model = regset BetaX + res(draw=1, ref=v); 

The model specification is very similar to that of a continuous model (Section 2.3), with an 
additional statement for the tobit threshold, “lower limit=0;”.  This statement indicates that 
the outcome is left-censored, i.e., censored from below.  The lower limit may be specified as any 
expression of variables (of at least the same level of aggregation as the outcome variable).  For 
example, “lower limit=abc”, where abc is a variable name, is permissible, as is “lower 
limit=15*sqrt(abc-16)”, should that make any sense.  (Expressions are discussed in Section 
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13.9.)  aML also supports right-censored tobit models (upper limit=...;) and dual-censored 
models; see Section 13.13.17 

Lines 14-21 specify the parameter values that aML will use in its first iteration of the search 
process: 

starting values; 
 
Constant   T    1377 
dropout    T    0 
college    T    0 
children   T    0 
SigmaV     T    681 
; 

The first four parameters correspond to the regressors in regressor set “BetaX”.  We 
initialized the intercept to the mean outcome (see work.sum).  Since the outcome is censored 
from below, the true mean will be less than 1377, but the censored mean is not a bad starting 
value.  Similarly, we initialized the standard deviation of v at the standard deviation of the 
censored outcome (681), even though the uncensored standard deviation will be greater.  (The 
uncensored mean and standard deviation may be found by running the model with an intercept but 
without covariates.) 

File “tobit.out” contains the output.  Its structure is very similar to output files from other 
model types.  The main difference is in information about the outcome (lines 53-66): 

 
 53    Summary statistics of the outcome and selected variables: 
 54  
 55    Tobit outcome type    |       Freq.    Percent 
 56    ----------------------+------------------------ 
 57    outcome < lower limit |          0        0.00 
 58    outcome = lower limit |        342       30.37 
 59    uncensored outcome    |        784       69.63 
 60    ----------------------+------------------------ 
 61                    Total |       1126      100.00 
 62  
 63    Uncensored outcomes: 
 64  
 65             |      #        Mean     Std Dev         Min         Max 
 66    ---------+------------------------------------------------------- 

                                                           
17 As discussed elsewhere, aML supports multivariate normal distributions.  Tobit models with residuals 

from a multivariate normal distribution will be censored in multiple dimensions, leading to multivariate tobit 
models.  There needs to be a tobit model specification for every dimension; make sure that the residual draws 
are the same in all such models, so that the residuals are correlated (e.g., Section 13.3.6).  Multivariate tobits 
are supported up to trivariate.  Experienced users with a need for higher-dimensional tobit models may 
specify independent residuals with additional residuals that induce correlation and that are integrated-out. 
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 67    outcome  |    784    1377.337     680.737           8        3227 

The first table shows the extent to which the outcome is censored.  There are no cases for 
which the outcome is smaller than the lower limit.  We would not expect any such cases here, but 
there may be applications for which the lower limit is not truly the lowest value in the data.  aML 
will treat such cases as censored at the user-specified lower limit and proceed without complaints, 
but report their frequency.  The table may also serve to catch errors in data preparation or model 
specification.  In our application, 30 percent of the sample was censored (worked zero hours) and 
70 percent uncensored (worked some positive number of hours). 

The second table provides more detail about the 784 uncensored outcomes.   

Section 13.13 contains many more details about (multilevel) tobit models. 
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2.10. Multinomial Logit Model 
This section illustrates the steps that are required to estimate a multinomial logit model.  The 

main steps are similar or identical to those for logit models, as explained in Section 2.2.  We 
therefore only highlight differences between estimation of logit and multinomial logit models.  If 
you have not yet read Section 2.2, please do so now.   

Multinomial logit models are appropriate when the outcome of interest may take on a limited 
number of values that are not ordered.  (If they are ordered, the ordered logit or ordered probit 
model is more appropriate.)  For example, someone may choose among various modes of 
transportation (walking, bicycle, own motorized transportation, public transportation); a household 
may own a residency, rent a residency, or be otherwise accommodated; a worker may be 
employed in agriculture, manufacturing, services, or other industry; et cetera.  The categories must 
be mutually exclusive and exhaustive, possibly through the inclusion of a residual category. 

Denote the probability that choice j (j=1,…,J) is selected by jP .  The likelihood function is: 

{ }
{ }
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exp
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′∑
,  1,..., ,j J=  

where J is the number of choices.  This model is defined by J sets of parameters jβ .  However, 
not all parameters are statistically identified.  We typically normalize all parameters associated 
with a certain category to be zero.18  Suppose this omitted category is the J-th category ( 0Jβ = ), 
so that the likelihood function reduces to: 
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The choice of omitted category is entirely arbitrary.  Also, while the potential choices in our 
example are numbered consecutively from 1 to J, no order is implied and any set of integer-valued 

                                                           
18 aML does not require that you normalize in this way.  You may specify an exhaustive set of choices 

and impose any number of identifying restrictions in the starting values.  Alternatively, in a multiprocess 
model, you could identify one set of parameters in a related model and estimate the full set of J parameters 

jβ .  While multinomial probit models (Section 2.6) are very similar to multinomial logit models, 
multinomial probit models must have an omitted category. 
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choices may be specified (see below).  Indeed, multinomial models treat all categories on the same 
footing; any reversal of assigned categories results in equivalent estimates. 

Most model estimation software packages require that the same set of explanatory covariates 
X enters in all choice equations.  While not expressed in the above likelihood equations, aML is 
more general in that it accepts different regressors in all choice equations.   

Interpretation of multinomial logit parameters is not straightforward.  For example, the 
derivative of the probability that choice j will be selected with respect to the k-th element of 
covariate vector X is: 

1

J
j

j jk ik i
ik

P
P P

X
β β

=

∂  = − ∂  
∑ , 

where ikβ  is the k-th element of coefficient vector iβ .  This probability depends on the point of 
evaluation, just like it does in the standard logit model.  However, it depends on all probabilities 

1P  through JP , and can change signs depending on those probabilities.  In other words, the 
multinomial logit model does not share the monotonicity property of standard logit models, where 
larger values of a covariate with a positive coefficient imply larger values of the probability.   

Many people find it easier to interpret multinomial logit parameters through the concept of 
log-odds ratios.  For example, the log-odds ratio of categories j and k is: 
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This log-odds ratio depends only on parameters jβ  and kβ .  If the choice set were to expand or 
contract from the current J options, the log-odds ratio of categories j and k would not be affected.  
This property is known as independence from irrelevant alternatives (IIA).  It is an undesirable 
property, because it also applies to highly relevant additional alternatives.19  The multinomial 
probit model, by contrast, does not suffer from this property (Section 2.11). 

                                                           
19 The standard example is the “red bus, blue bus” example.  Suppose one chooses among several modes 

of transportation, say, non-motorized (n), own motorized (o), and public transportation by bus (r), with 
certain probabilities.  Suppose all buses are red.  The odds ratio of red bus versus, say, non-motorized 
transportation, r nP P , reflects the relative preference of riding a red bus versus using non-motorized 
transportation.  Now suppose a new public bus service (b) is introduced that is identical to the existing bus 
service, except that its buses are blue in color.  We estimate a new multinomial logit model that includes the 
new blue bus service as a separate choice.  The interpretation of the log-odds ratio of red bus versus non-
motorized transportation, r nP P , remains the same as before, namely the relative preference of riding a red 
bus versus using non-motorized transportation.  Its value should therefore not change.  However, no change 
in the odds ratio can only occur if the blue buses gain market share by proportional decreases of the market 
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2.10.1. Model Specification and Estimation 

As an example, consider occupational choice.  We distinguish white collar jobs (occ=1), 
clerical jobs (occ=2), services (occ=3), and blue collar jobs (occ=4).  The outcome is distributed 
as follows: 

        occ |       Freq.    Percent 
------------+------------------------ 
          1 |        569       28.45 
          2 |        531       26.55 
          3 |        344       17.20 
          4 |        556       27.80 
------------+------------------------ 
      Total |       2000      100.00 

Given these four categories, we wish to estimate three sets of parameters.  Explanatory 
variables are sex, educational attainment, and health status.  The following control file 
(Samples\Chapter2\mlogit.aml) defines the building blocks and specifies a multinomial 
logit model: 

  1 dsn=occ; 
  2  
  3 define regset Clerical;   var= male (educyrs<12) (educyrs>=16) (health<=2) 1; 
  4 define regset Services;   var= male (educyrs<12) (educyrs>=16) (health<=2) 1; 
  5 define regset BlueCollar; var= male (educyrs<12) (educyrs>=16) (health<=2) 1; 
  6  
  7 multinomial logit model; 
  8    outcome=occ; 
  9    model 2 = regset Clerical; 
 10    model 3 = regset Services; 
 11    model 4 = regset BlueCollar; 
 12  
 13 starting values; 
 14  
 15 male      T    0 
 16 dropout   T    0 

                                                                                                                                                               
shares of other transportation modes.  This is implausible.  It is much more likely that blue buses dent the 
market share of red buses by far more than of other modes.  Indeed, in practice, the introduction of a new 
choice that is similar to an existing choice does affect the odds ratios.  This unpatable result is a consequence 
of the fact that the multinomial probit treats all outcomes on the same footing, without any account of 
similarities or dissimilarities among potential outcomes.  Then why do analysts not worry very much about 
the undesirable IIA property?  Key is to interpret the coefficients in the context of the empirical setting.  In 
other words, instead of assigning a very specific interpretation to an odds ratio (“relative preference of riding 
a red bus versus using non-motorized transportation”), one should interpret the coefficients as reflective of 
relative preferences among the alternatives offered.  If some alternatives are clearly very similar, consider 
estimating a multinomial probit model (Section 2.11) or a nested logit model (not supported by aML). 
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 17 college   T    0 
 18 goodhlth  T    0 
 19 constant  T    0 
 20 male      T    0 
 21 dropout   T    0 
 22 college   T    0 
 23 goodhlth  T    0 
 24 constant  T    0 
 25 male      T    0 
 26 dropout   T    0 
 27 college   T    0 
 28 goodhlth  T    0 
 29 constant  T    0 
 30 ; 

Line 1 specifies the input data set, as created by raw2aml and discussed in Section 2.1.   

Lines 3-5 define regressor sets with explanatory covariates.  Note that we use variable 
transformations.  Variable educyrs contains years of educational attainment, so that 
(educyrs<12) and (educyrs>=16) capture high school drop-outs and college graduates, 
respectively.  Variable health represents general health status, ranging from 1 (excellent) to 5 
(poor).  Transformation (health<=2) thus captures excellent or very good health. 

Lines 7–11 specify the model: 

multinomial logit model; 
   outcome = occ; 
   model 2 = regset Clerical; 
   model 3 = regset Services; 
   model 4 = regset BlueCollar; 

The model specification is very similar to that of a logit model (Section 2.2), except that there 
now are multiple model statements, each tagged with an integer number.  These integers 
correspond to the categories being modeled.  Outcome variable occ takes on values 1, 2, 3, and 4.  
We specify models for values 2, 3, and 4, i.e., the omitted category is 1.  More than one value may 
be omitted: any value for which there is no model statement ends up in the residual category.  As 
mentioned above, the choice of omitted category is arbitrary.  We chose the most common 
category, but we could have specified a model for outcome 1 and omitted one (or more) of the 
others. 

The three regressor sets all contain the same variables.  This results in the standard 
multinomial model, as supported by several other software packages.  However, aML does not 
require that all variables are the same.  Should this make sense, you may specify different 
variables.  (Similarly, you may specify different residual structures—in multilevel or multiprocess 
contexts, aML permits residuals in multinomial probits, exactly in the same way as in other types 
of models.  See Chapter 4, Section 13.6, and elsewhere throughout in this manual.) 

Lines 13-30 specify the parameter values that aML will use in its first iteration of the search 
process.  As always, they appear in the order of building block definitions.  The first five 
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parameters correspond to regressor set Clerical, the next five to Services, and the last five to 
BlueCollar.  For lack of better ideas, we initialized all parameters to zero.  We could have been 
smarter about initial values for the intercepts (see Section 6.10), but the multinomial logit model is 
well-behaved so we did not bother. 

File “mlogit.out” contains the output.  Its structure is very similar to output files from 
other model types.  The main difference is in information about the model and the outcome (lines 
61-77): 

 
 61 multinomial logit model; 
 62    outcome = occ; 
 63    model 2 = regset Clerical; 
 64    model 3 = regset Services; 
 65    model 4 = regset BlueCollar; 
 66    /*  Omitted category = 1  */ 
 67  
 68    Summary statistics of the outcome and selected variables: 
 69  
 70        outcome |       Freq.    Percent 
 71    ------------+------------------------ 
 72              1 |        569       28.45 
 73              2 |        531       26.55 
 74              3 |        344       17.20 
 75              4 |        556       27.80 
 76    ------------+------------------------ 
 77          Total |       2000      100.00 

The output file restates the model specification.  It adds a comment, “Omitted category = 
1”.  This serves as a reminder or a check.  The output file also contains a tabulation of the outcome 
values in the data. 

2.10.2. Coding of Outcomes 

The mathematical notation above assumed that outcomes are coded with values 1 through J.  
In the example, the outcomes followed this scheme with codes 1, 2, 3, and 4.  However, any other 
set of unique integer-valued codes is equivalent.  There is no need for category codes to be 
consecutive, no need for a numbering scheme that involves a zero or one.  For example, if 
occupation code occ were coded 26 (white collar), 7 (Clerical), -52 (Services), and 14 (blue 
collar), the following model specification would yield exactly the same results as the above 
specification: 

multinomial logit model; 
   outcome = occ; 
   model 7 = regset Clerical; 
   model -52 = regset Services; 
   model 14 = regset BlueCollar; 
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What would happen if a model equation is specified for every possible outcome, i.e., if there 
were no omitted category?  Such a model is not identified.  aML would write out a warning to that 
effect but continue nevertheless, under its usual assumption that you know what you are doing.  It 
may be, for example, that the parameters of one equation are identified off other parts of a 
multiprocess model, or identification may be derived from non-zero restrictions, or from equality 
restrictions across equations, or from some other restriction.  In short, it is the responsibility of the 
user to ensure that the model is identified. 
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2.11. Multinomial Probit Model 
This section illustrates the steps that are required to estimate a multinomial probit model.  The 

main steps are similar or identical to those for simple probit or multinomial logit models, as 
explained in Sections 2.1 and 2.10.  We therefore only highlight differences between estimation of 
simple probit and multinomial logit models on the one hand and multinomial probit models on the 
other.  If you have not yet read Sections 2.1 and 2.10, please do so now.   

Multinomial probit models are appropriate when the outcome of interest may take on a 
limited number of values that are not ordered.  (If they are ordered, the ordered probit model is 
more appropriate.)  For example, someone may choose among various modes of transportation 
(walking, bicycle, own motorized transportation, public transportation); a household may own a 
residency, rent a residency, or be otherwise accommodated; a worker may be employed in 
agriculture, manufacturing, services, or other industry; et cetera.  The categories must be mutually 
exclusive and exhaustive, possibly through the inclusion of a residual category. 

The main difference between a multinomial probit and a multinomial logit model is that the 
probit allows correlation among its residuals.  This feature enables it to capture the degree of 
similarity across alternatives, so that the multinomial logit’s undesirable independence of 
irrelevant alternatives (IIA) property does not apply (see page 79).  Unfortunately, the multinomial 
probit allows only up to four alternatives (including the omitted category); the multinomial logit 
does not have this limitation. 

The idea behind a multinomial probit is as follows.  Consider an outcome that may take four 
distinct values.  Each alternative has a pay-off (utility, value, degree of attractiveness): 

*
1 1 1
*
2 2 2
*
3 3 3
*
4 4 4

y X u
y X u
y X u
y X u

β
β
β
β

′= +
′= +
′= +
′= +

 

The alternative with the highest pay-off is chosen: 
* * * * *

1 2 3 4  if   max , , ,jY j y y y y y = =   . 

We only observe which alternative is chosen.  This implies that two normalizations are 
needed.  Only relative statements can be made, so the pay-off of one alternative needs to be fixed, 
typically by setting its value to zero.  For example, we could normalize *

4 0y = .  Here we 
arbitrarily normalized the last category, i.e., the last category is the omitted category.  Any other 
omitted category would yield equivalent results.  Since the magnitude of pay-offs is unknown and 
irrelevant, the scale needs to be normalized, typically by setting the standard deviations of 
residuals to one:  1 2 3 1σ σ σ= = = , where jσ  is the standard deviation of ju .   
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The coding of alternatives and the choice of omitted category are entirely arbitrary.  We 
coded the alternatives 1, 2, 3, and 4, but any other set of integer-valued codes is acceptable.  
Regardless of the codes assigned to alternatives, no order is implied.   

2.11.1. Model Specification and Estimation 

As an example, consider the occupational choice problem already discussed in Section 2.10.1.  
We distinguish white collar jobs (occ=1), clerical jobs (occ=2), services (occ=3), and blue collar 
jobs (occ=4).  Given these four categories, we wish to estimate three sets of parameters.  
Explanatory variables are sex, educational attainment, and health status.  The following control 
file (Samples\Chapter2\mprobit.aml) defines the building blocks and specifies a 
multinomial probit model: 

  1 dsn=occ; 
  2  
  3 define regset WhiteCollar; var=male (educyrs<12) (educyrs>=16) (health<=2) 1; 
  4 define regset Clerical;    var=male (educyrs<12) (educyrs>=16) (health<=2) 1; 
  5 define regset Services;    var=male (educyrs<12) (educyrs>=16) (health<=2) 1; 
  6  
  7 define normal distribution; dim=3; 
  8    name=u1;  name=u2;  name=u3; 
  9  
 10 multinomial probit model; 
 11    outcome = occ; 
 12    model 1 = regset WhiteCollar + res(draw=1, ref=u1); 
 13    model 2 = regset Clerical    + res(draw=1, ref=u2); 
 14    model 3 = regset Services    + res(draw=1, ref=u3); 
 15  
 16 starting values; 
 17  
 18 male      FTT    0 
 19 dropout   FTT    0 
 20 college   FTT    0 
 21 goodhlth  FTT    0 
 22 constant  TTT    0 
 23 male      FTT    0 
 24 dropout   FTT    0 
 25 college   FTT    0 
 26 goodhlth  FTT    0 
 27 constant  TTT    0 
 28 male      FTT    0 
 29 dropout   FTT    0 
 30 college   FTT    0 
 31 goodhlth  FTT    0 
 32 constant  TTT    0 
 33 SigmaU1   FFF    1 
 34 SigmaU2   FFF    1 
 35 SigmaU3   FFF    1 
 36 RhoU1U2   FFT    0 
 37 RhoU1U3   FFT    0 
 38 RhoU2U3   FFT    0 
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 39 ; 

Line 1 specifies the input data set, as created by raw2aml and discussed in Section 2.1.   

Lines 3-5 define regressor sets with explanatory covariates, exactly as in the multinomial logit 
example (Section 2.10.1). 

Lines 7-8 define a trivariate normal distribution.  So far, we have only encountered univariate 
distributions.  The multivariate extension is very straightforward:  just specify the dimension and 
define a residual for every dimension.  In this case, we define three residuals u1, u2, and u3. 

Lines 10-14 specify the model: 

multinomial probit model; 
   outcome = occ; 
   model 1 = regset WhiteCollar + res(draw=1, ref=u1); 
   model 2 = regset Clerical    + res(draw=1, ref=u2); 
   model 3 = regset Services    + res(draw=1, ref=u3); 

The model specification is very similar to that of a multinomial logit model (Section 2.10), 
except that there now are explicitly specified residuals.  As in multinomial logit models, there is a 
model statement for every alternative, except for the omitted category.  As mentioned above, the 
choice of omitted category is arbitrary.   

Residuals u1, u2, and u3 enter in the three choice equations.  A potentially important feature 
of multinomial probit models is the ability to have correlated residuals across the alternatives.  As 
introduced in Section 2.3, correlation is present for residuals that have the same “draw.”  Think of 
a draw as a realization of a distribution.  Here we have a trivariate distribution.  Each draw 
generates a set of values for u1, u2, and u3.  These values are correlated, following the covariance 
structure of the trivariate distribution.  Since we specified the same draw for u1, u2, and u3 in the 
three equations, the residuals are correlated.  Section 4.1 explains residuals in elaborate detail.  It 
may be summarized as follows: 

! Residuals are correlated across equations if and only if (a) they were defined as part of 
the same multivariate distribution and (b) they have the same draw.  

The three regressor sets all contain the same variables.  This results in the standard 
multinomial probit model, as supported by several other software packages.  However, aML does 
not require that all variables are the same.  Should this make sense, you may specify different 
variables.  (Similarly, you may specify different residual structures—in multilevel or multiprocess 
contexts, aML permits additional residuals in multinomial probits, exactly in the same way as in 
other types of models.  See Chapter 4, Section 13.15, and elsewhere throughout in this manual.) 
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Lines 18-38 specify the parameter values that aML will use in its first iteration of the search 
process.  As always, they appear in the order of building block definitions.  The first five 
parameters correspond to regressor set WhiteCollar, the next five to Clerical, and the last 
five to Services.  For lack of better ideas, we initialized all regression and correlation 
parameters to zero.  Unlike multinomial logit models, multinomial probit models are somewhat 
difficult to estimate, so we need to be careful in the search process.  Using multiple rounds of 
optimization (see Section 2.1.6), we first estimate intercepts only; then intercepts and regressors; 
and finally intercepts, regressors, and correlations.   

In practice, estimating correlations can be very tedious.  This is true in many model types, not 
just multinomial probit models, but multinomial probit models can be particularly challenging.  
Essentially, you are asking quite detailed information about unobserved things, based on data that 
only reveal rankings.  Before freeing up correlations, always estimate everything else (regressors) 
first, as in the example.  If you still encounter difficulty in the correlation stage, we recommend 
that you estimate regressors first, then free up correlations but fix regressors again, then free up 
correlations and intercepts, then free up everything.  More generally, estimating correlations may 
require freeing up only a few parameters at a time and carefully guiding the process until 
everything is freely estimated.  It is a good idea to monitor the weighted gradient norm during the 
search process.  It is supposed to decrease throughout the search process.  It may increase every 
now and then, but if it increases in two consecutive iterations, consider stopping the search and 
trying alternative subsets of freely estimated parameters.  Unfortunately, simple rules are not 
always sufficient to find the likelihood function’s maximum.  Sometimes it takes patience and 
experience. 

2.11.2. Coding of Outcomes 

The mathematical notation above assumed that outcomes are coded with values 1 through J.  
In the example, the outcomes followed this scheme with codes 1, 2, 3, and 4.  However, any other 
set of unique integer-valued codes is equivalent.  There is no need for category codes to be 
consecutive, no need for a numbering scheme that involves a zero or one.  For example, if 
occupation code occ were coded 26 (white collar), 7 (Clerical), -52 (Services), and 14 (blue 
collar), the following model specification would yield exactly the same results as the above 
specification: 

multinomial probit model; 
   outcome = occ; 
   model 26 = regset WhiteCollar + res(draw=1, ref=u1); 
   model 7 = regset Clerical    + res(draw=1, ref=u2); 
   model -52 = regset Services    + res(draw=1, ref=u3); 

What would happen if a model equation is specified for every possible outcome, i.e., if there 
were no omitted category?  Such a model is not identified.  In multinomial logit models, aML 
would write out a warning to that effect but continue nevertheless, under its usual assumption that 
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you know what you are doing.  By contrast, the algorithms of the multinomial probit model 
require that there is an omitted category.   
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3. Data Preparation 

3.1. Overview 

3.1.1. Introduction 

This chapter provides an overview of the data preparation process and general strategies for 
data preparation.  It assumes that you are familiar with the basics as described in Section 2.1.  If 
you have not read that section, please do so now. 

Chapter 2 gave simple examples of each model type that aML supports.  With the exception 
of hazard models with time-varying covariates, the sample data were trivially simple, with just a 
single level.  The example of a hazard model with time-varying covariates introduced data with 
two levels (Section 2.4.4).  The current section explains more generally how to construct data with 
any number of levels.  In addition, it introduces so-called data structures, which offer a particularly 
convenient way to organize data with information on multiple processes. 

The process of preparing data for analysis with aML is an integral part of the overall 
modeling and estimation process because the form of the data directly affects the model and 
interpretation of results.  Ideally, the structure of the data clearly reflects the model(s) to be 
estimated.  While for any particular model the data may be prepared in several ways to achieve the 
same result, some forms are easier to use and interpret.  More importantly, the data must be in a 
form appropriate to the intended model to be estimated. 

Apart from the ability to transform data variables on the fly, aML has few data manipulation 
features.  You should therefore select your sample, create outcome measures, clean explanatory 
covariates, and otherwise prepare your data using a third-party data management package such as 
SAS, Stata, SPSS, or other.  aML data preparation relates to the process of converting these (SAS, 
Stata, SPSS) data into a format that is most efficient to aML.  This is done by writing out the data 
in ASCII format and pre-processing them with raw2aml, an important program that is bundled 
with the aML package.  Its inputs are a control file, one or more ASCII data files, and, optionally, 
an ID file to link observations across files.  Its outputs are a data set (in binary format), and a 
summary data documentation file to be read by the user.  The output data set includes not just the 
actual data, but also variable names and information about the data’s internal organization. 

Before getting into the specifics of data preparation, we define multilevel data and discuss 
various types of files, data constructs, and types of variables.  Section 3.2 describes how to create 
data with multiple levels and/or for multiple processes.  Section 3.3 describes how to deal with so-
called rectangular data, i.e., data that appear to have the same number of subbranches for every 
branch in ASCII form, but that are in fact unbalanced.  Finally, as a general rule, you should 
organize your data into levels corresponding to their conceptual nesting patterns, but there are 
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circumstances under which you may save yourself some programming effort.  Section 3.4 reflects 
on such circumstances and suggests alternative ways to organize your data into levels.  Section 3.5 
discusses missing data and character variables. 

Multilevel Data and Multilevel Models 

Multilevel data are data that are nested in some 
natural manner.  For example, we may have data on 
a sample of schools; each school contains one or 
more students; each student attended the school one 
or more years; and there are zero or more tests in 
each year in school.  The outcome of interest may 
be, for example, student test scores, but since there 
may be correlation across test scores in a particular 
school, the unit of observation is a school.  In aML, 
the unit of observation is always level 1.  Level 1 is 
thus the highest level, the most aggregated level.  In 
the example, a school is level 1, a student level 2, a 
year in school level 3, and a test level 4.   

! 
The most aggregated data unit is level 1 in aML.  It represents the highest level.  Level 1 
is thus the unit of observation.  There may be zero or more level 2 units (“branches”) in 
each level 1 unit, zero or more level 3 branches in each level 2 branch, et cetera.  See 
the figure.  Lower level branches are often called “replications,” and outcomes in those 
branches “repeatedly observed.”  Careful: some other multilevel software packages 
assign level 1 to the most disaggregated level, i.e., they count levels in reverse order.  
The order has no practical implications. 

Before you create ASCII files with data to be converted by raw2aml, you need to decide how 
many levels your data have, and which variables are at which level.  Multilevel data have a natural 
nesting pattern which should tell you how many levels there are, but you have a fair amount of 
discretion.  In particular, aML does not require that a three-level model be based on three-level 
data.  You can estimate almost any level model on data with just two levels.  Also, you can 
estimate a one-level or two-level model on data with lots of levels. 

This may sound confusing but will actually make the data creation process much simpler.  
The trick is to distinguish between a conceptual and a technical number of levels.  A four-level 
model typically requires data with four conceptual levels.  However, it is often convenient to 
create a data set with just two (technical) levels.  We like to think of levels as subscripts.  For 
example, let ijtkS  be the test score of school i, student j, year t, test k.  You may create data with 
just two levels (school and test), as long as you include identifiers i, j, t, and k as variables in the 

Level 1 

Level 2 

Level 3 

Level 4 

Multilevel Data 
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data, to keep track of the nesting structure.  A four-level model explaining ijtkS  may be correctly 
specified by using the variables that correspond to i, j, t, and k.20   

To successfully model a multilevel issue, you must have a very clear understanding of the 
conceptual level structure.  The best way to structure aML data is, almost always, the same as the 
way your (SAS, Stata, SPSS) data are organized.  If the unit of observation in your (SAS, Stata, 
SPSS) data is a test, so that many observations pertain to the same school, then it will be most 
convenient to write out one ASCII record per (SAS, Stata, SPSS) observation.  Each record is a 
level 2 branch, tied together by a school ID.  The result is a perfectly fine data set with two levels.   

! The number of levels of your model and your data need not be the same.  Almost 
always, it is best to maintain the organization of your (SAS, Stata, SPSS) data.  It is 
rarely needed to do much data manipulation. 

Section 3.4 elaborates on this issue and spells out the very few exceptions under which you 
must keep levels distinct.  The raw2aml control file, discussed below, must indicate which 
variables are at which (technical) level. 

3.1.2. Types of Files 

ASCII Data Files  

ASCII data files contain the actual data that are the input to raw2aml.  You create them using 
your favorite data management package (SAS, Stata, SPSS, or other).  Each raw ASCII file must 
conform to a specific syntax described below.  There may be multiple raw ASCII files used to 
create one aML data file.  If more than one is used then they are linked by the observation ID, 
perhaps in an ID file described below.  A raw ASCII file may contain more than one data structure 
(defined below) and a data structure may appear in more than one raw ASCII file.  When multiple 
raw ASCII files are used, each must be sorted by ID.  

Raw data files may be either in “compressed” or “rectangular” format.  These terms refer to 
multilevel data that are “unbalanced.”  In “balanced” multilevel data, there is the same number of 
subbranches under a certain branch.  For example, there are five level 2 branches in every 
observation, and each of those five level 2 branches has two level 3 subbranches, and each of 
those ten level 3 branches has four level 4 subbranches.  There are very few multilevel data sets 
that are balanced.  Most have varying numbers of subbranches, i.e., most are unbalanced.  The 

                                                           
20 The ability to store four conceptual levels of data in two technical levels opens the door to cross-

classified problems.  For example, we could study test scores in schools with students and teachers, organized 
such that students and teachers are not nested.  See Section 3.4.1. 
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figure above, for example, shows unbalanced data.  If the ASCII data contain varying numbers of 
subbranches, we call them “compressed.”  If the ASCII data contain a fixed number of 
subbranches for every observation and every branch, they are “rectangular.”  If the data truly are 
balanced, there is no difference between the compressed and rectangular formats.  However, if the 
data really are unbalanced, the rectangular data contain lots of irrelevant filler branches.  That 
seems an inefficient way to store data, but sometimes you have little choice but to write out those 
irrelevant branches along with relevant information.  Raw2aml handles either format, as explained 
in detail in Section 3.3. 

ID File  

aML supports multiprocess models.  It is often convenient to create raw data from separate 
processes into separate ASCII files.  An ID file may be used to link together multiple raw ASCII 
files into one final aML data file.  When multiple raw ASCII files are linked by an ID file, it and 
each of the raw ASCII files must be sorted by ID. 

Raw2aml Control File  

The raw2aml control file controls the execution of raw2aml, which converts raw ASCII data 
into an aML data file to be used for analysis.  It specifies the name(s) of ASCII input file(s), the 
optional ID file, and lists variable names at each level and, optionally, for each data structure.  For 
rectangular data, it also tells raw2aml how many subbranches to read.  (Information on the number 
of relevant subbranches is observation-specific and must thus be part of the ASCII data, just like is 
the case for compressed data.)  We recommend extension “.r2a” for the raw2aml control file. 

Raw2aml Output Files:  aML-formatted Data File and Data Summary File 

Raw2aml uses raw ASCII data file(s) and the ID file, if any, to create data for aML which are 
efficient for model formulation and estimation.  Raw2aml also generates a human-readable data 
summary file for user documentation.  By default, aML-formatted data file names have extension 
“.dat”; the corresponding file with summary statistics has extension “.sum”. 

3.1.3. Data Structures 

aML supports multiprocess modeling with various types of outcomes and different sets of 
explanatory variables.  It is often convenient to organize one’s data into several data structures 
(subsets of variables), each dealing with one or more processes.  A data structure is thus a 
collection of variables, including both outcome variables and explanatory variables and possibly 
including multiple levels of data.  One data structure may have a different number of levels than 
another. 

If you are new to aML, you do not need to be concerned with data structures.  Most examples 
in this manual do not involve data structures.  Even the data for multiprocess examples are 



3.1.  Overview 93 

 

U
se

r’s
 G

ui
de

 

typically not separated into data structures.  However, if the variables of one process are very 
different from those of another process, it may be convenient to place one set of variables in one 
data structure and the other in another data structure.  Or perhaps one set of programs prepared the 
data for one outcome and another set of programs produced data for another outcome; in that case, 
too, it may be convenient to keep the variables into separate entities (data structures) rather than 
merge them before creating ASCII data.  You may also separate data purely because you want to 
run separate models on them.  For example, if you intend to run separate models for males and 
females, you could consider putting data pertaining to males in one data structure and those 
pertaining to females in another, even when the variables are the same.  The model statements, in 
the aML control file, will then specify to which data structure they apply. 

Data structures are numbered with strictly positive integers.  A structure number may be used 
in more than one ASCII data file, and any one ASCII data file may contain more than one data 
structure.  

3.1.4. Concepts of Variables 

In aML, variables may be categorized as either “control variables”  or “data variables.”  Data 
variables typically contain substantive information, often derived in one form or another from 
survey responses or experimental observation.  Control variables are variables in the data, but they 
do not contain substantive information.  Their sole purpose is to provide structure to the data.  You 
must list all data variables in the raw2aml control file, and you must not list any control variables.  
As a user, you are responsible for writing out three control variables to the ASCII data file(s): an 
observation ID variable, an optional data structure variable, and (for data with three or more 
levels) one or more variables telling raw2aml how many subbranches to read.  (Internally, 
raw2aml and aML create many more control variables, mostly to improve computational 
efficiency and to check on data integrity.)  This section discusses the two control variables and 
several data variables. 

Control Variable:  ID 

Every observation in multilevel data may contain potentially many subbranches with repeated 
outcomes and explanatory variables.  An observation consists of anything that is potentially 
correlated and is itself, by definition, statistically independent from other observations.  It is very 
important that aML knows which outcomes and explanatory variables belong to the same 
observation.  This is achieved by assigning all data belonging to a particular observation a unique 
ID.  These IDs must be strictly positive integer numbers.   

As you create ASCII data files to be converted by raw2aml, you must write the ID variable as 
the very first item on every logical record.  However, you must not list the ID variable among the 
variable list(s) in the raw2aml control file.  Raw2aml knows that it is always there.  In fact, it 
creates a variable in the output data, “_id” which is equal to the ID variable.  The output data set 
all variables that you listed in the raw2aml control file, plus one additional variable, “_id”. 
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All data that belong to the same observation must appear contiguously in any one ASCII data 
file.  For example, you may not write out part of the data for the first observation, then part of the 
second observation, and then the rest of the first observation, to the same ASCII file.  If that 
appears problematic, consider writing out your data to separate ASCII files.  All ASCII files must 
be sorted in the same ID order.  They do not necessarily need to be sorted in increasing ID order, 
although it tends to minimize errors if you do sort your (SAS, Stata, SPSS) by ID before creating 
ASCII files. 

Control Variable:  Data Structure Number 

As explained briefly in Section 3.1.3 above and more extensively in Section 3.2 below, you 
may organize your data into subsets called data structures.  Each data structure may have its own 
unique set of levels and variables.  There may be records belonging to multiple data structures in 
any one ASCII data file.  You must therefore tell raw2aml to which data structure a particular 
ASCII record belongs.   

Data structures are identified by number.  This number needs to be the second variable in 
logical ASCII records, immediately following the ID.  It needs to be on the same line (physical 
record) as the ID. 

The raw2aml control file must list variables for every data structure.  If raw2aml encounters a 
data structure that is not documented in the control file, it generates an error message.  If the 
raw2aml control file specifies one or more data structures, raw2aml knows that every ASCII 
record contains a data structure in its second field.  The data structure number thus appears in the 
raw2aml control file, but the data structure variable must not be listed as a variable.   

Control Variable(s):  Number(s) of Subbranches 

Number(s) of subbranches are relevant only for data with three or more technical levels.  
Apart from data for hazard models with time-varying covariates, such data are not common.  See 
Section 3.4. 

aML supports unbalanced multilevel data, i.e., data in which the number of subbranches may 
vary across observations.  You therefore need to tell raw2aml how many subbranches to expect 
when it reads a particular record in your ASCII file(s).  This is achieved by writing out a control 
variable that is equal to the number of subbranches. 

As will be explained in detail below, each ASCII data logical record corresponds to a level 2 
unit or “branch.”21  If your data contain three levels, you need to specify in each level 2 branch 
how many level 3 subbranches to expect.  This one extra number is a control variable, because it 
only serves to organize the data.  If your data contain four levels, you must not only specify how 

                                                           
21 Each level 2 branch may contain very many variables which may wrap over multiple lines in the 

ASCII file.  Each line constitutes a physical record, so there may be multiple physical records for each logical 
record. 
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many level 3 subbranches to expect, but also how many level 4 subbranches there are within each 
level 3 branch.  Suppose the number of level 3 subbranches is n3; there must then be n3 additional 
control variables for the numbers of level 4 subbranches, for a total of 1+n3 control variables.  If 
your data contain five levels, additional control variables are needed to specify the numbers of 
level 5 subbranches within each of the level 4 branches; et cetera.  If your data contain only two 
levels, no control variables are needed, because each level 2 branch is written as a separate logical 
ASCII record. 

In ASCII data sets, the number or numbers of subbranches must immediately follow the ID 
variable and the optional data structure variable. 

Variables that specify how many subbranches to expect are in the data and may vary across 
observations and (sub)branches.  However, they are control variables without substantive 
information and must not be listed in the raw2aml control file. 

Data Variables:  Level-Specific Variables 

All data variables live at a certain level.  Level 1 variables are constant for the entire 
observation.  For example, in school test data, there may be schools (level 1), students (level 2), 
years in school (level 3), and tests (level 4).  Any variable that is school-specific (private/public, 
geographic location) may be a level 1 variable.  Student-specific variables (sex, date of birth) may 
be level 2 variables, et cetera. 

! In ASCII data files, control variables (ID, data structure, numbers of subbranches) come 
first, followed by level 1 variables, followed by level 2 variables, followed by level 3 
variables, et cetera. 

If you want, you may replicate higher-level variables for each subbranch and list them as 
lower-level variables.  For example, you could replicate the sex of a student for every test and list 
variable sex as a level 4 variable.  It would require more storage space for your data and serve 
little purpose, but it illustrates that the (technical) levels that you determine need not be the same 
as the conceptual levels in the data.  aML does not care, generally speaking, at what level a 
variable appears, provided that its level is at least as high as the outcome variable.  We note one 
exception: in weighted optimization (“option weight” or “option normweight”), the 
weight variable must be a level 1 variable. 

The raw2aml control file must list which variables are at which level.  In the ASCII data, each 
level-specific variable must be present for each replication at its level.  There can be no missing 
value for any variable.  In other words, missing values in your (SAS, Stata, SPSS) data set must 
first be resolved before creating ASCII data files; see Section 3.5. 
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Data Variables:  Outcome variables 

Outcome variables may be specified at any level.  The level of the outcome variable(s) 
specified in a model statement determine the “level of the outcome.”  Any variable (explanatory 
variable in a regressor set, reference variable, draw variable, etc) used in a model statement for 
that outcome must be at the same level or higher in the data.  For example, if the outcome of a 
probit model is at level 3, then all explanatory variables, reference variables, et cetera, must be at 
level 1, 2 and/or 3.  (There is one exception: in hazard models with time-varying covariates, 
variables in regressor sets may be one level below the outcome variables.)   

Raw2aml and aML do not know which variables are outcome variables.  From their 
perspective, outcome variables are just like all other data variables. 

Data Variables:  Draw Variables 

Some variables are used for the special purpose of determining independence of residuals.  
Residuals in model statements are specified as “res(draw=varname, ...)”.  Every time a 
residual appears in an equation, aML evaluates its draw and determines whether the residual is 
independent from residuals in other equations or whether it is correlated with residuals in other 
equations.  Residuals with the same draw variable are correlated and independent from residuals 
with another draw variable.  (See Section 4.1.2 for details.) 

Draw variables must be at the same level or higher as the outcome variable.  They help 
control the model specification, not the organization of the data, and are thus ordinary data 
variables.  They must be listed in the raw2aml control file, just like all other data variables.  Draw 
variables must be strictly positive and integer-valued. 

Data Variables:  Indirect Reference Variables 

Model statements specify models in terms of previously defined building blocks.  There are 
two ways to refer to those building blocks: directly and indirectly.  Direct referencing means that 
the model specification simply contains the name of the building block.  For example, 

model = regset BetaX + res(draw=varname, ref=eps) 

contains two directly referenced building blocks, regressor set BetaX and residual eps.  Indirect 
referencing is used when building blocks need to enter an equation conditional on the value of 
some so-called reference variable.  For example: 

model = regset(refvar=educ) + res(draw=varname, refvar=sex); 

Both educ and sex are reference variables.  Their values determine which regressor set and 
residual enter the model equation; a zero reference variable implies that a building block does not 
enter the equation at all.   Indirect referencing requires that building block definitions contain so-
called reference numbers, so that they may be identified not just be name, but also by number.  
See Section 13.3.4 for a detailed discussion.   
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Reference variables must be at the same level or higher as the outcome variable.  They help 
control the model specification, not the organization of the data, and are thus ordinary data 
variables.  They must be listed in the raw2aml control file, just like all other data variables.  
Reference variables must be non-negative and integer-valued. 
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3.2. Multilevel and Multiprocess Data 
Most examples above used data with just a single level.  One of aML’s strengths, though, is 

its ability to store multilevel data and to estimate multilevel models.  This section illustrates how 
to create multilevel data with raw2aml.  Throughout this section, we assume that you are familiar 
with the conversion of single-level data (Section 2.1), and with concepts of files and variables 
(Section 3.1).   

There are two important aspects to the creation of multilevel data:  the structure of ASCII data 
file(s) and the syntax of the raw2aml control file.  We illustrate both aspects for two-level and 
three-level sample data and for data with two data structures.  All files are included with aML’s 
sample data and programs under Samples\Section3.  The samples illustrate the most 
commonly used options and features.  For a complete discussion see Chapters 9 and 10. 

Sections 3.2.1, 3.2.2, and 3.2.3 illustrate how to create data with two, three, and more levels, 
respectively.  Section 3.2.4 discusses multiprocess data. 

3.2.1. Two-Level Data 

Suppose we are interested in the decision to deliver babies in a hospital versus at home or 
elsewhere, and we have data on one or more births per female respondent.  Also see Section 4.1.1.  
The data contain information on 501 mothers with a total of 1060 births. 

First we need to decide on the level structure.  Children are nested within mothers, so mothers 
form level 1 and children are at level 2.  In other words, each child corresponds to a level 2 
branch.  If the (SAS, Stata, SPSS) data do not yet contain unique mother IDs, we need to create 
them now.  Suppose the ID variable is momid.  Other variables include educ (maternal 
education), income (parental family income), distance (distance to nearest hospital, in km), and 
hospital (indicator for whether the child was delivered in a hospital).  Maternal education is 
measured after the last child is born and does not vary across births.  It is therefore a level 1 
variable.  All other variables may vary from birth to birth.   

Suppose the unit of observation in the data is a birth.  The records for the first four mothers 
(11 births) contain: 
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momid educ income distance hospital

4 3 76 1.7 0 
  275 7.9 0 
  200 1.8 1 

17 2 47 6.2 0 
  1665 1.0 1 
  95 4.8 0 

18 3 196 1.8 1 
  80 3.7 0 

20 2 169 10.6 1 
  51 3.2 1 
  190 3.1 0 

The four mothers shown here had one, five, one, and four children, respectively. 

The basic rule for creating ASCII data files is that each (logical) record corresponds to a level 
2 branch, i.e., to a birth.  The rationale and full implications of that rule will become clear below.  
Writing out information pertaining to one level 2 branch (birth) at a time is particularly easy in the 
example, because the unit of observation is a birth.  In SAS, the code may be: 

data _null_; 
   set dataname; 
   file ’hospital.raw’; 
   put momid educ income distance hospital; 

and in Stata: 

outfile momid educ income distance hospital using hospital.raw 

In both cases, the ASCII file that is created is “hospital.raw”.  The first 11 records are: 

4 3 76 1.7 0 
17 2 275 7.9 0 
17 2 200 1.8 1 
17 2 47 6.2 0 
17 2 1665 1 1 
17 2 95 4.8 0 
18 3 196 1.8 1 
20 2 80 3.7 0 
20 2 169 10.6 1 
20 2 51 3.2 1 
20 2 190 3.1 0 
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This shows the SAS version.  Stata, by default, neatly lines up the data in columns.  As a result, it 
places up to ten blank space between values, thus creating ASCII files that are far larger than 
needed.  We recommend that you use Stata’s “comma” option to the outfile command: 

outfile momid educ income distance hospital using hospital.raw, comma 

All data fields are now separated by a comma and (in this example) take about two-thirds less disk 
space.  Raw2aml accepts either delimiter. 

! Data fields in ASCII data files may be delimited by blank spaces, commas, tab 
characters, and/or line feeds (carriage returns).  The latter simply means that data fields 
may wrap over multiple lines.  There is one exception:  the observation ID and the data 
structure number, if any, must be on the same line; see Section 3.2.4. 

The ASCII data are now ready to be converted into aML-format by raw2aml.  Raw2aml reads 
its required information from a control file (hospital.r2a): 

  1 ascii data file = hospital.raw; 
  2  
  3 level 1 var = educ; 
  4 level 2 var = income distance hospital; 

The raw2aml control file specifies the name(s) of the ASCII input data and lists variable 
names, by level.  Note carefully that the ID variable, momid, does not appear in the control file. 

! The raw2aml control file lists the names of data variables only.  Control variables, 
such as the observation ID, are not listed. 

Run raw2aml with “hospital.r2a” as control file: 

raw2aml hospital 

This produces an aML-formatted data file and a human-readable data documentation file.  By 
default, the data file has the same name as the control file, but with extension “.dat” rather than 
“.r2a”.  The documentation file also has the same stem but with extension “.sum”.  Raw2aml 
thus produced data file “hospital.dat”, in binary form, and documentation file 
“hospital.sum”, a text file.  Its contents are also written to standard output: 

  1 Documentation for 'hospital.dat' 
  2 Created on Sun Feb 13 11:03:20 2000 with raw2aml version 1.00. 
  3 Ascii data set: 'hospital.raw' 
  4  
  5 Number of observations:     501 
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  6 Maximum number of level 2 branches in any observation:     10 
  7  
  8 ------------------------------------------------------------ 
  9  
 10 LEVEL 1 VARIABLES: 
 11 Variable     N       Mean    Std Dev        Min        Max 
 12 _id        501   1221.261   723.3883        4.0     2472.0 
 13 educ       501   1.552894   .6447454        1.0        3.0 
 14  
 15 LEVEL 2 VARIABLES: 
 16 Variable     N       Mean    Std Dev        Min        Max 
 17 income    1060   1097.325   2386.767        4.0    29481.0 
 18 distance  1060   3.918396   2.875465        0.1       17.0 
 19 hospital  1060   .2971698   .4572277        0.0        1.0 
 20  
 21 ------------------------------------------------------------ 
 22  
 23 NOTE: there is variation in all data variables. 

Please verify that the number of observations is correct.  If it is too high or low, the IDs were 
not properly linked.  This will be the case if there are more or fewer variables in the ASCII file 
than specified in the raw2aml control file.  Also verify that the maximum number of level 2 
branches corresponds to the maximum in the (SAS, Stata, SPSS) data.  In this case, there are up to 
ten births per woman. 

The only level 1 variable that we specified in the raw2aml control file is educ.  Raw2aml 
adds another variable, _id.  Its value corresponds to the observation ID, as was stored in (SAS, 
Stata, SPSS) variable momid.  You may use it like any other level 1 variable in model statements, 
if you desire. 

The summary statistics indicate the number of values (N) upon which the mean, standard 
deviation, minimum, and maximum are based.  Please verify that these numbers are correct.  
There are 501 level 1 values.  There were 501 women in the sample, so that is correct.  Note that 
we wrote out educ for every ASCII record (birth), i.e., we duplicated it.  Raw2aml knows, 
however, that it is a level 1 variable, and only counts them once for every observation.  (It also 
checks that its value is the same for every birth and generates an error message if there is variation 
within observation.) 

The data are now ready for analysis by aML; Section 4.1.1 estimates a probit model with 
unobserved heterogeneity at the mother level using these data. 

What If the Unit of Observation is Level 1? 

The two-level hospital delivery example was straightforward, in part because the unit of 
observation in the (SAS, Stata, SPSS) data set was level 2, i.e., the level at which every ASCII 
record needs to be written out.  What if the unit of observation were a woman?  Recall that there 
were up to ten births per mother (line 6 in “hospital.sum”).  Suppose the actual number of 
children is given by variable numkids.  The data would contain 501 observations with the 
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following variables:  momid, as before; educ, as before; numkids, with the number of births of 
the index mother; income1-income10, with income values at the time of the birth of each of the 
up-to-ten children; dist1-dist10, with distances to the nearest hospital; and hosp1-hosp10, 
with hospital delivery indicators.  Many of the array variables (income1-income10, dist1-
dist10, hosp1-hosp10) will be missing, as only a few women had ten births. 

To be clear: it will be highly unusual for multilevel data to be organized such that each (SAS, 
Stata, SPSS) observation corresponds to the most aggregate level.  We discuss it for illustration 
only. 

The creation of the ASCII data file will be more complicated now that the unit of observation 
is not level 2.  In SAS, the code may still be relatively straightforward: 

data _null_; 
   set dataname; 
   array income(*) income1-income10; 
   array dist(*)   dist1-dist10; 
   array hosp(*)   hosp1-hosp10; 
   file ’hospital.raw’; 
   do i=1 to numkids; 
      put momid educ income(i) dist(i) hosp(i); 
   end; 

In Stata, by contrast, all commands are applied to all observations without allowing for looping 
over observation-specific limits, such as numkids.  We therefore need to transform the data such 
that each observation corresponds to a child: 

reshape long income dist hosp, i(momid) j(child) 

This creates a “long” data set with 1060 observations, each corresponding to a birth.  It is identical 
to the data that we described earlier in this section (except that the distance variable is dist rather 
than distance, the hospital variable is hosp rather than hospital, and a child index number 
variable was created, child.)  The data may now be written out as before: 

outfile momid educ income dist hosp using hospital.raw, comma 

3.2.2. Three-Level Data 

Section 2.4 described estimation of a hazard model of disruption of a first marriage.  Suppose 
we are interested in the hazard of any marital disruption, not just disruption of the first marriage. 
We have data on the dissolution of one or more marriages per respondent.  One of the explanatory 
variables is the number of children that the couple has (possibly from prior relationships).  This 
covariate may change during a marriage and is thus time-varying.   

We first need to decide on the level structure.  Each respondent may have multiple marriages, 
and time-varying covariates are nested within marriage spells.  Consistent with these conceptual 
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levels, we define the level 1 unit to be a respondent, the level 2 unit to be a marriage, and the level 
3 unit to be a time interval within a marriage. 

If the (SAS, Stata, SPSS) data do not yet contain a respondent ID, we need to create one.  
Suppose the ID variable is personid.  Other variables include sampling weight (weight); a 
variable indicating whether the marriage was still intact as of the last known date (censor); two 
variables indicating the lower and upper bound of the duration of the hazard spell (lower and 
upper); the marriage number of the index marriage (marnum); respondent’s age as of the 
beginning of the marriage (age); educational attainment of the husband and wife (hiseduc and 
hereduc); indicators for whether husband and wife are African-American (heblack and 
sheblack); the age difference between husband and wife (agediff); the number of time 
intervals in a marriage spell (numint); the number of children that live with the couple (numkid), 
and the duration between the birth of a child and the beginning of the marriage (time).  These 
variables were explained more fully in Section 2.4 which illustrated a simple hazard model.  The 
difference with those data is that we now add information on second and higher order marriages.  
In Section 2.4, levels 1 and 2 corresponded to a marriage and a time interval, respectively.  We 
now insert the respondent at level 1 and move marriages and time intervals to levels 2 and 3, 
respectively.  The important additional variables are the marriage number (marnum) and the 
number of time intervals within a spell (numint).  The latter is not really new, but it was not 
needed in Section 2.4.  It is now. 

The novelty of this section is the introduction of a third level.  As always, each logical ASCII 
record must correspond to a level 2 branch, i.e., to a marriage spell.  The sequence in which 
variables must be written out is: control variables, level 1 data variables, level 2 data variables, 
level 3 data variables.  With three levels, we need to tell raw2aml how many level 3 subbranches 
to read in the current level 2 branch.  The information is contained in the variable for number of 
time intervals within a spell (numint).  This variable is needed to provide structure to the data, 
and is thus a control variable, just like the observation ID. 

! Every ASCII record contains all information pertaining to a level 2 branch.  ASCII 
data with three levels (and without data structure) need to be ordered as follows:  
control variables (ID and number of level 3 subbranches in this level 2 branch); level 1 
data variables; level 2 data variables; and level 3 data variables.  Level 3 variables are 
sorted by level 3 subbranch, i.e., first all variables for the first level 3 subbranch, then 
all variables for the second level 3 subbranch, et cetera.  

For now, assume that the unit of observation in the (SAS, Stata, SPSS) data is a marriage.  
There are 3,371 respondents in the data with a total of 4,238 marriages, so that the number of 
(SAS, Stata, SPSS) observations is 4,238.  Suppose the maximum number of time intervals (level 
3 subbranches) in any one marriage is 17, i.e., 1 17≤ ≤numint .  (The minimum is one, not zero, 
because even if the couple did not have any children during the marriage, the number of children 
would be constant, and there would still be one value for numkid.)  The level 3 variables are thus 
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in fact arrays, as they take on 17 different values over the life of a spell:  numkid1-numkid17 
and time1-time17. 

The following table shows data values for five respondents whose experiences are illustrative: 
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9 23 1 1 10.5 10.5 12 12 0 0 21.0 1.0 2 3.7 0 10.5 1 . . . .
11 23 1 1 34.9 34.9 3 3 0 0 24.5 .7 3 .8 0 32.5 1 34.9 2 . .
15 23 1 0 15.0 20.1 7 7 0 0 19.5 2.4 1 20.1 0 . . . . . .
  2 1 13.9 13.9 7 3 0 0 68.3 15.1 1 13.9 0 . . . . . .

43 23 1 1 16.7 16.7 16 16 0 0 22.5 .2 4 3.1 0 4.6 1 6.7 2 16.7 3
  1 1 4.1 4.1 16 16 0 0 24.8 2.4 2 3.8 0 4.1 1 . . . .

77 26 2 0 6.5 6.6 16 16 0 0 31.8 2.4 2 3.4 0 6.6 1 . . . .
  3 0 .7 .8 16 16 0 0 38.5 2.4 1 .8 0 . . . . . .

The example pertains to hazard data with time-varying covariates.  If you are not specifically 
interested in hazard models, you may skip the narrative interpretation of the data and go to the 
SAS code about one-half of a page below.  The important aspect is that there are three levels.  
Each observation has potentially different numbers of level 2 branches, and each level 2 branch 
has potentially different numbers of level 3 subbranches. 

Each row in the data table above corresponds to a marriage, i.e., to an observation in the 
(SAS, Stata, SPSS) data set.  Variable censor indicates whether a marriage was disrupted 
(censor=0) or whether it survived to the last survey date or until widowhood (censor=1).  The 
respondent with personid=15 was married twice; his first marriage ended in divorce 
(censor=0), and his second marriage survived.  The respondent with personid=43 was married 
once and had three children at 3.1, 4.6, and 6.7 years after the wedding.  The respondent with 
personid=77 was married twice.  The first marriage survived but ended in widowhood 
(censor=1); the second and third marriages both ended in divorce (censor=0).   

Variable numint was generated to indicate how many level 3 subbranches there are, i.e., how 
many nonmissing (relevant) sets of level 3 variables (time and numkid) there are.  None of the 
respondents shown in the table had more than four level 3 subbranches, so we only showed 
time1-time4 and numkid1-numkid4, but there are individuals with up to seventeen level 3 
subbranches and nonmissing values of time17 and numkid17. 

Note that the highest nonmissing time value is always equal to variable upper which denotes 
the upper bound of the event duration.  The highest time mark must always be at least as high as 
the upper bound, because otherwise aML would not know what the values of time-varying 
covariates are beyond the highest time mark. 

In SAS, the data may be written out as follows: 



3.2.  Multilevel and Multiprocess Data 105 

 

U
se

r’s
 G

ui
de

 

data _null_; 
   set dataname; 
   array time(*)   time1-time17; 
   array numkid(*) numkid1-numkid17; 
   file ’divorce3.raw’; 
   put personid numint                /* control variables */ 
       weight                                   /* level 1 */ 
       marnum censor lower upper hiseduc        /* level 2 */ 
       hereduc heblack sheblack age agediff;    /* level 2 */ 
   do i=1 to numint; 
      put time(i) numkid(i);                    /* level 3 */ 
   end; 

Note the control variables personid and numint.  The latter tells raw2aml how many 
replications of level 3 variables (time and numkid) to read in.  Also carefully note the order in 
which level 3 variables are written out:  first all variables for the first level 3 subbranch, then all 
variables for the second level 3 subbranch, et cetera.  Do not write out all numint values of time, 
followed by all numint values of numkid! 

The ASCII records corresponding to the data table above contain the following 
(divorce3.raw).  Note that non-integer numbers in the data table were rounded; the records 
below are from “Samples\Chapter3\divorce3.raw” (with added line numbers): 

 1 9 2 23 1 1 10.546 10.546 12 12 0 0 20.953 1.013 3.734 0 10.546 1 
 2 11 3 23 1 1 34.943 34.943 3 3 0 0 24.498 .687 .767 0 32.512 1 34.943 2 
 4 15 1 23 1 0 15.012 20.052 7 7 0 0 19.499 2.352 20.052 0 
 5 15 1 23 2 1 13.944 13.944 7 3 0 0 68.29 15.064 13.944 0 
 8 43 4 23 1 1 16.706 16.706 16 16 0 0 22.5 .162 3.083 0 4.578 1 6.664 2 16.706 3 
16 77 2 26 1 1 4.085 4.085 16 16 0 0 24.835 2.352 3.833 0 4.085 1 
17 77 2 26 2 0 6.557 6.634 16 16 0 0 31.819 2.352 3.428 0 6.634 1 
18 77 1 26 3 0 .709 .786 16 16 0 0 38.5 2.352 .786 0 

In Stata, the procedure is not quite as straightforward, because Stata does not allow looping 
over observation-specific values, such as numint.  In other words, it cannot write out two sets of 
level 3 variables for one observation and some other number of sets for the next.  The solution is 
write out all 17 sets of variables for all observations.  Of course, there will then be many missing 
values.  Section 3.3 explains how to solve this issue.   

The data may be converted with raw2aml using the following control file (divorce3.r2a): 

  1 ascii data file = divorce3.raw; 
  2  
  3 level 1 var = weight; 
  4 level 2 var = marnum censor lower upper hiseduc 
  5               hereduc heblack sheblack age agediff; 
  6 level 3 var = time numkids; 

This creates data file “divorce3.dat” and corresponding data documentation file 
“divorce3.sum”: 
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  1 Documentation for 'divorce3.dat' 
  2 Created on Sun Feb  6 10:19:34 2000 with raw2aml version 1.00. 
  3 Ascii data set: 'divorce3.raw' 
  4  
  5 Number of observations:    3371 
  6 Maximum number of level 2 branches in any observation:      6 
  7 Maximum number of level 3 branches in any observation:     17 
  8 Maximum number of level 3 branches in any level 2 branch:  17 
  9  
 10 ------------------------------------------------------------ 
 11  
 12 LEVEL 1 VARIABLES: 
 13 Variable      N       Mean    Std Dev        Min        Max 
 14 _id        3371   7761.647   4959.523        9.0    17302.0 
 15 weight     3371   15.88876   10.23573        1.0       32.0 
 16  
 17 LEVEL 2 VARIABLES: 
 18 Variable      N       Mean    Std Dev        Min        Max 
 19 marnum     4238   1.241387   0.522801        1.0        6.0 
 20 censor     4238   .7067013   .4553279        0.0        1.0 
 21 lower      4238   16.33635   14.46773       0.06     73.068 
 22 upper      4238   17.05656   14.51844      0.063     73.068 
 23 hiseduc    4238   11.54719   3.041219        1.0       21.0 
 24 hereduc    4238   11.52053    2.88509        1.0       21.0 
 25 heblack    4238   .2177914   .4127936        0.0        1.0 
 26 sheblack   4238   .2328929   .4227244        0.0        1.0 
 27 age        4238   25.94252   9.421657      5.342     86.335 
 28 agediff    4238   2.447035   5.392547    -39.663     38.081 
 29  
 30 LEVEL 3 VARIABLES: 
 31 Variable      N       Mean    Std Dev        Min        Max 
 32 time      10082   10.54854   11.78084      0.003     73.068 
 33 numkids   10082   1.372148   1.832152        0.0       16.0 
 34  
 35 ------------------------------------------------------------ 
 36  
 37 NOTE: there is variation in all data variables. 

As always, please carefully check that the number of observations is correct.  Recall that there 
were 3,371 respondents in the data with a total of 4,238 marriages.  The number of observations 
that the data documentation file reports (line 5) is the “true” number of observations, not the 
number of observations in the (SAS, Stata, SPSS) data set, where the unit of observation was a 
marriage.  Line 6 reports that there were up to 6 level 2 branches in any observation, i.e., up to six 
marriages per respondent.  Line 7 reports that there were up to 17 level 3 branches per observation 
and line 8 that there were up to 17 level 3 branches per level 2 branch.  Always verify that these 
numbers correspond to the maximum dimensions in your data. 

In the summary statistics of level 2 variables, note that they are based on 4,238 replications, 
which corresponds to the number of marriages.   

The data are now ready for model estimation by aML. 
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So far, we assumed that the unit of observation in the (SAS, Stata, SPSS) data set is a 
marriage.  What if the unit were a respondent, i.e., a level 1 unit?  Since there are up to six 
marriages per person, each level 2 variable is stored in six variables.  There should be a variable 
indicating the number of marriages for the index person, nummar.  Furthermore, since there are up 
to 17 intervals (level 3 subbranches) in any one marriage (level 2 branch), each level 3 variable is 
stored in 6*17=102 variables.   

Again, it would be highly unusual for the (SAS, Stata, SPSS) data to be organized such that 
each observation corresponds to the most aggregate level.  We discuss the case for illustrative 
purposes only. 

As always, each logical ASCII record needs to contain all information pertaining to a level 2 
branch.  The ASCII data should thus be identical to the data described above.  The issue is thus 
purely a (SAS, Stata, SPSS) coding issue.  Assuming that the variables are neatly organized in 
arrays, the data may be written out using SAS as follows: 

data _null_; 
   set dataname; 
   array censor(6)   censor1-censor6; 
   array lower(6)    lower1-lower6; 
   array upper(6)    upper1-upper6; 
   array hiseduc(6)  hiseduc1-hiseduc6; 
   array hereduc(6)  hereduc1-hereduc6; 
   array heblack(6)  heblack1-heblack6; 
   array sheblck(6)  sheblck1-sheblck6; 
   array age(6)      age1-age6; 
   array agediff(6)  agediff1-agediff6; 
   array numint(6)   numint1-numint6; 
   array time(6,17)  time1-time102; 
   array numkd(6,17) numkd1-numkd102; 
   file ’divorce3.raw’; 
   do i=1 to nummar; 
      put personid numint(i)          /* control variables */ 
          weight                                /* level 1 */ 
          i censor(i) lower(i) upper(i) hiseduc(i) /* level 2 */ 
          hereduc(i) heblack(i) sheblck(i) age(i) agediff(i); 
      do j=1 to numint(i); 
         put time(i,j) numkd(i,j);              /* level 3 */ 
      end; 
   end; 

The resulting ASCII data file is identical to the file created earlier in this section.  Note that 
the ASCII data creation process is substantially simpler when the unit of observation in the (SAS, 
Stata, SPSS) data corresponds to a level 2 unit.  Also note that the data are stored more efficiently 
when the unit of observation is a level 2 unit, because there is no need to allocate space for six sets 
of level 2 variables and 6*17=102 sets of level 3 variables for each observation. 
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As before, Stata users will need to write out all six sets of level 2 variables and all 6*17=102 
sets of level 3 variables, even though many will be irrelevant and missing.  See Section 3.3. 

Finally, what if the unit of observation in the (SAS, Stata, SPSS) data corresponds to a level 3 
unit?  The data would be even more compact, because there is no need to allocate space for 17 sets 
of level 3 variables.  As before, the ASCII data need to contain the very same information, so the 
data creation issue is a (SAS, Stata, SPSS) coding issue.  Assuming that the data are sorted by 
respondent ID (personid) and marriage number (marnum) and time interval, the ASCII data may 
be created as follows in SAS: 

data _null_; 
   set dataname; 
   by personid marnum; 
   file ’divorce3.raw’; 
   if (first.marnum) then put 
      personid numint                /* control variables */ 
      weight                                   /* level 1 */ 
      marnum censor lower upper hiseduc        /* level 2 */ 
      hereduc heblack sheblack age agediff;    /* level 2 */ 
   put time numkid;                            /* level 3 */ 

If the unit of observation is lower than level 2, Stata users must first reshape their data such 
that the unit of observation corresponds to a level 2 branch.  This is most conveniently done with 
the “reshape” command.  It requires that the data contain a counter indicating the level 3 branch 
number within each level 2 branch (marriage): 

quietly by personid marnum: generate interval=_n 
reshape wide time numkid, i(personid marnum) j(interval) 

The data now have a marriage as the unit of observation and variables time and numkid are 
converted into time1-time17 and numkid1-numkid17.  As before, all 17 sets of level 3 
variables need to be written out, including many irrelevant (missing) values; see Section 3.3. 

3.2.3. Four and Higher Level Data 

! It is rarely (if ever) necessary to create data with four or more (technical) levels.  Even 
if your model features four or more conceptual levels, it is almost always more 
convenient to create aML data with two levels (three if there are hazard models with 
time-varying covariates).  See Section 3.4. 

The rule that every logical ASCII record contains all information pertaining to a level 2 
branch remains applicable to data with four or more levels.   
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! Every ASCII record contains all information pertaining to a level 2 branch.  ASCII 
data with four or more levels (and without data structure) need to be ordered as 
follows:  control variables (ID and numbers of level 3+ subbranches in this level 2 
branch); level 1 data variables; level 2 data variables; level 3 data variables, level 4 
data variables, level 5 data variables, et cetera.  Level 3 variables are sorted by level 3 
subbranch, level 4 variables are sorted by level 4 subbranch, et cetera. 

With four or more levels, additional control variables are required to tell raw2aml how the 
data are organized.  With one or two levels, the only control variable is the observation ID.  With 
three levels, the ID needs to be followed by the number of level 3 subbranches in the current level 
2 branch.  With four levels, you need to add the numbers of level 4 subbranches within each level 
3 subbranch.  For example, if a level 2 branch contains four level 3 subbranches, and those four 
level 3 subbranches have 2, 3, 3, and 0 level 4 subbranches, then the ID variable must be followed 
by “4 2 3 3 0”.  With five levels, you need to add the numbers of level 5 subbranches within 
each level 4 subbranch.  Continuing the example, the four level 3 subbranches had a total of eight 
level 4 subbranches, and eight additional numbers of level 5 subbranches thus need to be 
specified.  (Note that the fourth level 3 subbranch did not have any level 4 subbranches, and you 
must not specify anything about further nonexisting level 5 subbranches.)  The control variables 
thus are: 

id   n3   n4...n4   n5...n5   n6...n6   <et cetera> 

where n3 is the number of level 3 subbranches in the current ASCII record (level 2 branch), 
n4...n4 are the numbers of level 4 subbranches, et cetera.  As the number of levels increases, the 
numbers of subbranches that need to be specified tends to increase rapidly. 

Consider an example of school test data.  The data contain a sample of 286 schools (level 1).  
From each school, one or more students are sampled (level 2).  The students attended the school 
one or more years (level 3).  In each year, they took one or more tests (level 4).  The level of 
observation in the (SAS, Stata, SPSS) data set is a student.  Schools are identified by variable 
schoolid.  We also know whether they are innercity (innercty) or private (private) schools.  
Level 2 variables include the student’s ID (student), sex (male), father’s education (dadeduc), 
and mother’s education (momeduc).  Level 3 variables include grade level (grade), whether the 
student was held back last year (retain), and class size (clssize).  The only level 4 variable is 
the test score (score). 

There are up to 18 students per school, up to six years in school per student (including grade 
duplication), and up to seven tests per school year.  Since the unit of observation in the (SAS, 
Stata, SPSS) data is a student, level 3 and level 4 variables are stored as arrays.  For example, 
there are up to six years in school per student, so there are six class size variables (clssize1-
clssize6).  There are up to seven tests per school year, so there are 6*7=42 test score variables 
(score1-score42).  The number of years in school is given by variable numyears; the numbers 
of tests in each year are in numtst1-numtst6.  (Variable numyears corresponds to n3 above, 
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and numtst1-numtst6 correspond to n4...n4, above.)  In SAS, the ASCII data file may be 
written out as follows. 

data _null_; 
   set dataname; 
   array numtst(6)  numtst1-numtst6; 
   array grade(6)   grade1-grade6; 
   array retain(6)  retain1-retain6; 
   array clssize(6) clssize1-clssize6; 
   array score(6,7) score1-score42; 
   file ’school.raw’; 
 
   put schoolid numyears;           /* control vars ID and n3 */ 
   do i=1 to numyears; 
      put numtst(i);                  /* control vars n4...n4 */ 
   end; 
   put innercty private                        /* level 1 */ 
       student male dadeduc momeduc;           /* level 2 */ 
   do i=1 to numyears; 
      put i grade(i) retain(i) clssize(i);     /* level 3 */ 
   end; 
   do i=1 to numyears; 
      do j=1 to numtst(i); 
         put score(i,j);                       /* level 4 */ 
      end; 
   end; 

Note carefully that all level 3 variables are written out before all level 4 variables.  The 
resulting file is “Samples\Chapter3\school.raw”.  The raw2aml control file (school.r2a) 
is: 

  1 ascii data file = school.raw; 
  2  
  3 level 1 var = innercty private; 
  4 level 2 var = student male dadeduc momeduc; 
  5 level 3 var = year grade retain clssize; 
  6 level 4 var = score; 

As always, the only variables that are listed are data variables.  Raw2aml expects to find 
control variables, and they must not be listed.  The student ID variable (student) is not an 
observation ID and is thus not a control variable.  Its use will become clear in Section 4.1.2.  
Similarly, we wrote out the counter variable (i) to identify year-in-school.  It, too, will be needed 
in Section 4.1.2.  In raw2aml, we gave the variable a more meaningful name (year).  

Raw2aml produced aML-formatted file “school.dat” and its documentation file 
“school.sum”: 
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  1 Documentation for 'school.dat' 
  2 Created on Sun Feb 20 14:14:30 2000 with raw2aml version 1.00. 
  3 Ascii data set: 'school.raw' 
  4  
  5 Number of observations:     286 
  6 Maximum number of level 2 branches in any observation:     18 
  7 Maximum number of level 3 branches in any observation:     70 
  8 Maximum number of level 4 branches in any observation:    343 
  9 Maximum number of level 3 branches in any level 2 branch:   6 
 10 Maximum number of level 4 branches in any level 2 branch:  33 
 11 Maximum number of level 4 branches in any level 3 branch:   7 
 12  
 13 ------------------------------------------------------------ 
 14  
 15 LEVEL 1 VARIABLES: 
 16 Variable      N       Mean    Std Dev        Min        Max 
 17 _id         286   479.2517   283.9388        1.0      969.0 
 18 innercty    286   .2027972   .4027875        0.0        1.0 
 19 private     286   .3146853   .4652044        0.0        1.0 
 20  
 21 LEVEL 2 VARIABLES: 
 22 Variable      N       Mean    Std Dev        Min        Max 
 23 student    2699   5.735087    3.45229        1.0       18.0 
 24 male       2699   .4972212   .5000849        0.0        1.0 
 25 dadeduc    2699   1.909226   0.704944        1.0        3.0 
 26 momeduc    2699   1.904409   .7092886        1.0        3.0 
 27  
 28 LEVEL 3 VARIABLES: 
 29 Variable      N       Mean    Std Dev        Min        Max 
 30 year       9210   2.383713   1.147876        1.0        6.0 
 31 grade      9210     10.538   1.117643        9.0       12.0 
 32 retain     9210   .0338762   .1809204        0.0        1.0 
 33 clssize    9210   21.98067    2.01516       15.0       29.0 
 34  
 35 LEVEL 4 VARIABLES: 
 36 Variable      N       Mean    Std Dev        Min        Max 
 37 score     46130   6.583481   .9453058        3.0       10.0 
 38  
 39 ------------------------------------------------------------ 
 40  
 41 NOTE: there is variation in all data variables. 

As always, verify that the documentation corresponds to your knowledge of the data.  For 
example, the maximum numbers of (sub)branches in any observation or lower-level branch 
indicate that there are up to 18 students per school, up to six years in school per student, and up to 
seven tests per school year.  The documentation also shows that there are up to 70 school years 
and up to 343 tests per school, and up to 33 tests per student.  The data will be used to estimate a 
four-level model in Section 4.1.2. 

Raw2aml and aML support any level of nested data.  For more details see Chapter 10. 
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3.2.4. Multiprocess Data with Multiple Data Structures 

aML supports multiprocess estimation, that is, estimation of models with different types of 
outcomes.  For example, you may jointly estimate probit and hazard outcomes, or continuous and 
binomial outcomes, or any combination of any of the types of outcomes that aML supports.  And, 
of course, you may also estimate models with two or more conceptually different types of 
outcomes that follow the same type of model, such as two hazard processes, or two logit models, 
et cetera. 

You would typically estimate multiple processes using data that are created as explained in 
the preceding subsections, without additional complications.  Suppose, for example, that you are 
interested in the effect of hospital delivery on infant survival, and you are concerned about the 
potential endogeneity of the choice to deliver babies in hospitals.  (You are worried that you will 
underestimate the effect of hospital care, because women with high-risk pregnancies are more 
likely to go to a hospital.)  You would create data with infant survival outcomes (perhaps a hazard 
model, or a probit or logit for survival until the first birthday) with explanatory variables that 
include an indicator of whether the baby was delivered in a hospital.  At the same time, that 
hospital indicator variable is the outcome of a decision process that you wish to model jointly, so 
the data should also include explanatory variables for that outcome.  The data contain two 
outcomes and any number of explanatory variables and may be prepared using the approach 
explained in the preceding subsections.  You may estimate your multiprocess model on these data.  
There is nothing new here from the perspective of data creation. 

However, as explained in Section 3.1.3, it is sometimes necessary and other times convenient 
to separate your data into so-called data structures.  This type of data organization does have 
implications for data preparation.  This subsection explains how to create data with multiple data 
structures.  To be clear:  data are sometimes split up into data structures because they contain 
different variables or levels, and thus reflect multiple processes.  However, multiprocess models 
may perfectly well be estimated off data without data structures. 

Consider an example where you are more or less forced to define multiple data structures.  
Suppose you are interested in modeling the determinants of wages.  Your data contain individuals 
with one or more jobs over a period of time.  On each job, annual wages are reported.  One of the 
covariates of interest is job tenure, i.e., the length of time on the job.  Job tenure may be 
endogenous, because both tenure and wages may be related to the unobserved quality of the match 
between job and employee.  You therefore decide to jointly estimate job tenure (a hazard model) 
and wage determination (a continuous model).  How should the data be structured?  The unit of 
observation (level 1) is the individual, and jobs are level 2 units.  Annual wage outcomes are 
nested within jobs, so wages are level 3 units.  But the job tenure hazard model may contain time-
varying covariates, such as marital status.  Those covariates are constant over subintervals of job 
spells and change discretely from one subinterval to the next.  The subintervals over which they 
are constant are not likely to coincide with calendar years to which annual wages refer.  In other 
words, you would like to create two different types of levels 3, one for annual wages and one for 
subintervals over which time-varying covariates are constant.  It is possible to do so, but it would 
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require some trickery that we do not advocate.  A better solution is to place variables related to job 
tenure as an outcome in one data structure and variables related to wages as an outcome in 
another. 

From the example it may be clear that applications that require separation of data into data 
structures tend to be very complex.  There is no reason to introduce any complexities to illustrate 
the creation of data with multiple structures, which is actually very straightforward.  So let’s 
continue with an example that could have been done without data structures.   

Suppose you wish to estimate a model of marriage formation.  Your data contain information 
on both first and subsequent marriages.  You anticipate that the model specification for first 
marriages will be different from the specification of subsequent marriages, if only because several 
determinants of second and higher order marriage formations are absent for the first marriage.  For 
example, duration since the last marriage ended does not apply.  You therefore anticipate 
specifying separate models for first and subsequent marriages.  It may then be convenient to define 
one data structure for first marriages, and another for subsequent marriages.  Let’s assign data 
structures 10 and 20 to first and subsequent spells, respectively.  In the aML estimation stage, you 
will then specify one model for first marriages, applicable to data structure 10, and another model 
for subsequent marriages, applicable to data structure 20.   

The variable list of data structures 10 and 20 are different:  the list of data structure 20 
includes all variables of data structure 10, plus duration since the last marriage ended, an indicator 
for marital status (divorced or widowed; for first marriages it would always be never married and 
thus without variation), and perhaps more.  You therefore need to tell raw2aml whether the current 
logical ASCII record belongs to data structure 10 or 20.  This is done by inserting the data 
structure number immediately after the observation ID. 

! 
Every ASCII record contains all information pertaining to a level 2 branch.  ASCII 
data with data structures need to be ordered as follows:  control variables, level 1 data 
variables, level 2 data variables, level 3 data variables, level 4 data variables, et cetera.  
The control variables are the observation ID, data structure, and numbers of level 3 
and lower subbranches in this level 2 branch.  The ID and the data structure number 
must be on the same line (physical ASCII record); all other variables may wrap over 
multiple lines. 

The raw2aml control file needs to specify variable lists at all levels for all data structures.  
Level 1 variables pertain to the observation, the most aggregated unit, and must thus be equal for 
all data structures.  Data structures may therefore differ only at level 2 or lower.  This is the 
rationale for the rule that each logical ASCII records must pertain one level 2 branch, and must 
include all information for the index level 2 branch and all its subbranches.  The raw2aml control 
file may be as follows: 

ascii data file = filename.raw; 
 
level 1 var = <varlist>; 
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data structure = 10; 
   level 2 var = <varlist>; 
   level 3 var = <varlist>; 
 
data structure = 20; 
   level 2 var = <varlist>; 
   level 3 var = <varlist>; 

Now suppose that the data for data structures 10 and 20 were created by different series of 
(SAS, Stata, SPSS) programs.  It is then convenient to create one raw ASCII file for the data of 
data structure 10 and another for data structure 20.  Suppose the files are “data10.raw” and 
“data20.raw”.  Raw2aml knows to merge records from the two files on the basis of the 
observation ID with which every record begins.  But what if not every ID is present on both files?  
For example, “data10.raw” may have records for ID=1, 3, 4, etc., whereas “data20.raw” has 
records for ID=1, 2, 5, etc.  In such cases, an ID file provides raw2aml with all possible IDs.  The 
ID file, say, “id.raw”, should have one record for every ID.  Each record should contain an ID 
only, no other variables.  The raw2aml syntax would be: 

ascii data files = data10.raw  data20.raw; 
id file = id.raw; 

et cetera; the remainder is as above.  Raw2aml will first read an ID from the ID file; then turn to 
“data10.raw” and read records until the ID no longer matches the ID from the ID file; then turn 
to “data20.raw” and read records until the ID no longer matches the ID from the ID file; then 
merge records pertaining to the same ID and write them out into a single aML record; then read a 
second ID from the ID file, et cetera. 

The example illustrated data with three levels, but the syntax is similar for any data level.  
Different data structures may have different number of levels and different variable lists.  The 
variable lists only contain data variables.  None of the control variables (ID, data structure, 
numbers of level 3 and lower subbranches) is listed.  Raw2aml knows that they are in the ASCII 
data. 

! 
The raw2aml control file specifies separate variable lists for each of the data 
structures.  The data structure number itself must be specified (data structure=n), 
but the control variable in the ASCII data that contains the data structure number must 
not appear in any of the variable lists.  The data structure number is a control variable 
and is therefore not listed in the raw2aml control file.  We have encountered three 
types of control variables:  observation ID, data structure number, and numbers of 
level 3 and lower subbranches.  They serve to communicate the organization of the 
data to raw2aml, and are the only control variables for which the user is responsible. 
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There is no hard limit to the number of data structures that you may distinguish.  Data 
structure numbers must be strictly positive and integer-valued.   
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3.3. Rectangular Data 
The term “rectangular data” refers to data that, in the ASCII data file, contain values for a 

fixed and constant number of subbranches, even though the numbers of subbranches varies from 
observation to observation or from (sub)branch to (sub)branch.  Rectangular data thus contain 
potentially many irrelevant values.  The term contrasts with “compressed data,” which only 
contain data values for existing subbranches, i.e., only relevant data.  Raw2aml is capable of 
converting either format into exactly the same aML-formatted file.  The aML-formatted file never 
contains any irrelevant data values. 

The distinction between rectangular and compressed data only applies to data with three or 
more levels.  ASCII records always pertain to level 2 units, so there may only be irrelevant data at 
level 3 and lower. 

In SAS, there is no reason to ever create rectangular data.  It permits looping over the actual 
number of subbranches and only writing out relevant data.  In Stata, however, this is not always 
possible.  We encountered this in Section 3.2.2, where there were up to 17 subintervals (level 3 
branches) in any one marriage spell (level 2 branch).  If a particular marriage spell only contains, 
say, four subintervals, then the remaining 13 sets of level 3 variables will be missing.  See, for 
example, the data table on page 104.  Stata does not permit writing out just four sets of level 3 
variables for one marriage and some other number of sets for another.  It requires that you write 
out the same variables for every Stata observation.   

Stata represents missing values as a period character (“.”).  Unfortunately, raw2aml does not 
accept missing values in the form of period characters.  You must therefore set irrelevant values 
equal to some other number (we recommend –99) and then write out all 17 sets of level 3 
variables.  If a marriage spell contains four level 3 subbranches, then its ASCII record will contain 
four sets of relevant level 3 variables and 13 sets of irrelevant level 3 variables that are all equal to 
–99.  Everything else in the ASCII data file(s) is the same as with compressed data.  In particular, 
you must still write out the control variable(s) that specify the numbers of level 3 and lower 
subbranches to read in.  Those numbers now refer to relevant subbranches only.  Raw2aml will 
read in 17 sets, but keep only the number that is relevant. 

Continuing the divorce data example of Section 3.2.2, the Stata commands to create ASCII 
data file “divorce4.raw” are: 

#delimit ; 
/* Replace missing values of level 3 variables by -99 */ 
mvencode time1-time17 numkid1-numkid17, mv(-99) override; 
/* Create the ASCII data file */ 
outfile personid numint               /* control variables */ 
       weight                                   /* level 1 */ 
       marnum censor lower upper hiseduc        /* level 2 */ 
       hereduc heblack sheblack age agediff 
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       time1  numkid1                           /* level 3 */ 
       time2  numkid2 
       time3  numkid3 
       time4  numkid4 
       time5  numkid5 
       time6  numkid6 
       time7  numkid7 
       time8  numkid8 
       time9  numkid9 
       time10 numkid10 
       time11 numkid11 
       time12 numkid12 
       time13 numkid13 
       time14 numkid14 
       time15 numkid15 
       time16 numkid16 
       time17 numkid17   using divorce4.raw, replace comma wide; 

The ASCII records corresponding to the data table on page 104 contain the following.  Note 
that non-integer numbers in the data table were rounded; the records below are from the actual 
“Samples\Chapter3\divorce4.raw” (with added line numbers and wrapped lines): 

  1 9,2,23,1,1,10.546,10.546,12,12,0,0,20.953,1.013,3.734,0,10.546,1,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99 

  2 11,3,23,1,1,34.943,34.943,3,3,0,0,24.498,.687,.767,0,32.512,1,34.943,2,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99 

  4 15,1,23,1,0,15.012,20.052,7,7,0,0,19.499,2.352,20.052,0,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99 

  5 15,1,23,2,1,13.944,13.944,7,3,0,0,68.29,15.064,13.944,0,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99 

  8 43,4,23,1,1,16.706,16.706,16,16,0,0,22.5,.162,3.083,0,4.578,1,6.664,2, 
16.706,3,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99 

 16 77,2,26,1,1,4.085,4.085,16,16,0,0,24.835,2.352,3.833,0,4.085,1,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99 

 17 77,2,26,2,0,6.557,6.634,16,16,0,0,31.819,2.352,3.428,0,6.634,1,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99 

 18 77,1,26,3,0,.709,.786,16,16,0,0,38.5,2.352,.786,0,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99,-99, 
-99,-99,-99,-99,-99,-99,-99 

The second control variable, numint, tells raw2aml how many relevant sets of level 3 
variables there are.  It also needs to be told to read a total of 17 sets.  This is done in the raw2aml 
control file (divorce4.r2a): 
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  1 ascii data file = divorce4.raw; 
  2  
  3 level 1 var = weight; 
  4 level 2 var = marnum censor lower upper hiseduc 
  5               hereduc heblack sheblack age agediff; 
  6 level 3 var (nb=17) = time numkids; 

This file differs from its counterpart that handles compressed data (divorce3.r2a) in the 
“nb=17” specification on line 6.  This specification tells raw2aml to always read 17 sets of level 3 
variables.  The syntax applies analogously to data with more than three levels: 

level 1 var = <varlist>; 
level 2 var = <varlist>; 
level 3 var (nb=n3) = <varlist>; 
level 4 var (nb=n4) = <varlist>; 
level 5 var (nb=n5) = <varlist>; 
et cetera… 

where n3, n4, n5, et cetera, are the number of level 3, 4, 5, et cetera subbranches to read in within 
any level 2, 3, 4, et cetera, (sub)branch. 

The resulting data file (divorce4.dat), is identical to the file created with compressed data 
(divorce3.dat).  (Identical except for the creation date and time, which is stored toward the end 
of the data file.)  The corresponding data documentation file (divorce4.sum) is also identical, 
except for two additional lines: 

  1 Documentation for 'divorce4.dat' 
 
 et cetera... 
 
 39 NOTE: all irrelevant level 3+ variables are equal to -99. 
 40 NOTE: relevant level 3+ variables are never equal to -99. 

By default, raw2aml checks that all irrelevant sets of level 3 variables are –99, as they should 
be, and that none of the relevant values is equal to –99.  If any irrelevant value is not –99, it 
generates an error message.  If any relevant value is –99, it issues a warning.  The two notes on 
lines 39 and 40 report on these data integrity checks. 

If any relevant values are equal to –99, it is better to select another “special” value to 
represent irrelevant values.  This may be done by: 

option irrelevance check = n; 

where n is the number you select as special value.  The default value is –99.  If you do not want 
raw2aml to check the values of relevant and irrelevant values at all, specify: 

option irrelevance check = no; 

We recommend that you always allow raw2aml to check on the integrity of the data.   
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It is important to distinguish irrelevant values from missing values.  Both types may be 
represented by a period (“.”) in your (SAS, Stata, SPSS) data, but they represent fundamentally 
different things.  Irrelevant values arise when a number of subbranches is lower than the maximum 
in the data; missing values arise when a respondent is not able or willing to answer a question.  
Irrelevant values should be set to –99 (or other) before creating the ASCII data file.  Raw2aml 
checks their value and discards them.  The aML-formatted data will only contain relevant data.  
Missing values need to be resolved before creating the ASCII data file, by imputation or otherwise 
(Section 3.5). 

Section 10.7 contains additional detail on rectangular data. 
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3.4. Choosing Appropriate Level Units 
Multilevel data tend to be nested in some natural order.  At the top of the hierarchy is the 

observation unit, which in aML is level 1.  Anything within an observation may be modeled 
jointly; conversely, any two outcomes that belong to different observations are considered 
independent.  If you think that they may be correlated, then you should redefine observation IDs 
such that the outcomes belong to the same observation, and retransform the data with raw2aml.  
By definition, observations are statistically independent, whereas outcomes within an observation 
are potentially correlated. 

You should have a clear understanding of 
the conceptual levels in your data, because the 
model specification should explicitly account for 
corresponding correlations.  For example, 
suppose you are interested in wage rates, 
particularly in any correlation between husbands 
and wives.  Your panel data provide information 
on the annual wages that husbands and wives 
have earned on potentially multiple jobs over 
their career.  As visualized in the figure, at level 
1 is the couple, at level 2 the individuals 
(husband and wife).  The husband held four jobs, 
the wife two (level 3 branches).  For the 
husband’s first and second jobs, one annual 
wage is available in the data; for his third job, 
we have three wage rates; for his fourth two wage rates (level 4 branches).  For the wife’s first job, 
no wage rate is available; for her second job, three wage rates are known. 

It is perhaps most intuitive to structure your data in raw2aml and aML in correspondence with 
the conceptual level structure.  In other words, the “technical” levels would correspond to the 
“conceptual” levels.  However, you do not need to adhere to the conceptual level structure.  In 
particular, it is often convenient to collapse your conceptual multilevel structure into fewer data 
layers.  This section discusses that alternative and outlines the circumstances under which you 
may wish to deviate from the conceptual structure.  With few exceptions, aML’s model 
specifications are controlled by the values of variables, not by the level at which they are stored, 
and model estimation results will be identical under alternative ways of organizing the data into 
levels.  For example, a person-specific heterogeneity component is specified by a residual which is 
constant across all outcomes of the individual.  This is achieved by specifying a draw variable 
which is constant across all repeated outcomes of the individual—it does not matter whether that 
variable is at the outcome level or higher.  We will briefly describe the exceptions toward the end 
of this section. 

Consider again the example of households (level 1) with persons (level 2), jobs (level 3), and 
wage records (level 4).  You could write out the data into ASCII data files such that the level 

Level 1 

Level 2 

Level 3 

Level 4 

Multilevel Data 
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structure in the data corresponds to the conceptual level structure.  Recall that an ASCII record 
must contain all information pertaining to a level 2 branch, i.e., all person-, job-, and wage-
specific variables.  If the unit of observation in your (SAS, Stata, SPSS) data is a person, this 
should not pose any problems.  If the unit of observation is not a person, you may or may not need 
to go through data transformations, depending on the features of the data management package 
that you are using.  If such data transformations are cumbersome, you may wish to consider an 
alternative level structure in which, for example, level 2 corresponds to a job. 

Compare the figure to the right with the one 
above.  The household remains unchanged at 
level 1, but we collapsed the level structure such 
that the six level 3 branches (jobs) in the 
conceptual structure are technically level 2 
branches.  The ten wage observations have 
become level 3 subbranches.  From the figure, it 
is no longer possible to identify persons, 
because they are collapsed with jobs.  However, 
in the data it is still possible to identify persons.  
The list of level 2 variables consists of both the 
conceptual level 2 (person-specific) and level 3 (job-specific) variables.  All person-level variables 
are thus still in the data.  Their values have been duplicated corresponding to the number of jobs 
that they contribute.  In other words, the first person had four jobs and his characteristics are now 
four times in the data, duplicated for each job; the second person had two jobs, and the variables 
pertaining to her are twice in the data.  The information is thus still in the data, and may be used to 
specify models. 

To illustrate this further, suppose wage rates are in variable wage, and the sex of a person is 
flagged by variable male.  You may wish to specify different models for male and female wage 
determination.  This may be done as follows: 

continuous model; keep if male==1;  /* model for men */ 
   outcome = wage; 
   model = ...; 
continuous model; keep if male==0;  /* model for women */ 
   outcome = wage; 
   model = ...; 

As a result, the seven wage observations of the first person are captured by the first model 
statement, whereas the second model statement captures the three wage observations of the second 
person.  If level 2 corresponds to a person (as in the conceptual level structure), there would only 
be two occurrences of the male variable; if level 3 corresponds to a job, there would be six.  aML 
does not care either way.  The first model’s outcome is stored in variable wage.  aML determines 
at what level that variable lives and loops over all subbranches at that level.  For every subbranch, 
it checks the “keep” condition to determine whether this subbranch contributes to the model.  The 
keep condition involves variable male, which happens to be a higher-level variable.  This makes 

Level 1 

Level 2 

Level 3 

Partially Collapsed Multilevel Data 
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no difference to aML; it simply evaluates the variable and decided whether to keep of drop each 
subbranch.  The same procedure is carried out for the second model statement. 

You could also collapse the data such that 
level 2 corresponds to a wage rate.  aML 
would determine that outcome variable wage 
is at level 2, and loop over all ten level 2 
branches.  It would evaluate variable male in 
the keep condition, which would happen to be 
at the same level as the outcome.  The first 
seven wage outcomes would be captured by 
the first model, and the next three was outcomes by the second model, just like before.  It does not 
matter at what level the outcome is, and at what level variables are that enter the model 
equation(s). 

The situation would be different if the outcome were not at the lowest level.  For example, 
suppose you wish to analyze duration on each of the six jobs in the data, and the data are collapsed 
such that wage records are level 2 branches.  There would then be ten level 2 branches, with all 
job-specific variables duplicated as many times as there are wage records for that job.  The first 
person had three wage records on his first job, so that job’s characteristics, including job duration, 
enters three times in the data.  Unless you are very careful to only keep one occurrence, you would 
implicitly weight the outcomes by the number of wage records.  This may bias the estimates and 
yield overly optimistic standard errors.  (An additional problem is that the second person’s first 
job did not have any wage information, and would have been dropped from data that were 
completely collapsed for wage analysis.)  If the data were partially collapsed such that each job is 
a level 2 branch, there would be no duplication of job-specific variables, and the job duration 
analysis would not raise any special issues. 

Collapsing levels requires duplication of variables, which implies that the data occupy more 
storage space than if no levels were collapsed.  Raw2aml and aML’s run times will be marginally 
higher because of additional time to read data.  However, with relatively inexpensive disk storage 
and computer time, the reduced programming effort probably more than offsets this inefficiency. 

In summary, each record in ASCII data files must contain all information pertaining to a level 
2 branch.  If the unit of observation in your (SAS, Stata, SPSS) data corresponds to a conceptually 
lower level, you may wish to collapse levels and create data in which the technical level 2 
corresponds to the unit of observation in the (SAS, Stata, SPSS) data.  However, in some cases, 
this may lead to undesired results: 

• If one of the outcomes of interest is not at the lowest level, its values are being duplicated as it 
becomes the level 2 unit.  Duplication implies that the same outcome enters multiple times in 
the model, leading to inflated t-statistics and potentially biased estimates of the parameters 
themselves.  This may be solved by only keeping one occurrence of the duplicated outcomes.  
However, if the duplicated variables are censor and duration variables from a hazard model 
with time-varying covariates, you should not keep just one occurrence, because time-varying 

Level 1 

Level 2 

Fully Collapsed Multilevel Data 
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information would be lost.  Time-varying covariates should remain one level below the censor 
and spell duration variables.   

• If your model contains autoregressive moving average (ARMA) or cumulative autoregressive 
(CAR) residuals, the level structure does matter for independence of residuals across branches 
of a specified level.  ARMA and CAR residuals are autocorrelated across outcomes within a 
specified level, and independent across branches of the specified level.  It is thus important to 
maintain conceptual levels in the data.  See Sections 5.10, 13.2.7 and 13.2.8. 

Barring those circumstances, the level structure may be chosen as convenient.  The results of 
estimation will be equivalent. 

Section 10.5 further discusses the choice of levels. 

3.4.1. Cross-Classification 

Cross-classification arises when subjects are not nested.  For example, suppose we wish to 
analyze test scores and allow for both student and teacher effects.  One student may have several 
teachers; every teacher has more than one student, and several students may have several teachers 
in common.  In other words, the data are not nested. 

aML can estimate (some) models with cross-classification, provided that there is some 
clustering at the highest level.  For example, while students and teachers are not nested among 
each other, they are nested within schools.  We may therefore specify a model along the following 
lines (see Section 4.1.2 for details on draws): 

continuous model; 
   outcome = score; 
   model = ... + 
           res(draw=1, ref=eps) + 
           res(draw=teacher, ref=eta) + 
           res(draw=student, ref=delta)+ 
           res(draw=_iid, ref=u); 

Residual eps is drawn with the same draw (value) for all outcomes within an observation, i.e., the 
same value for all tests in a school; there is a different value of residual eta for every teacher; a 
different (transitory) residual delta for every student; and a different residual u for every test.  
The fact that teachers and students are not nested does not matter. 

The ability to estimate models on cross-classified data breaks down when the cross-
classification spreads across observations (level 1 units).  For example, if teachers teach at 
multiple schools or if students switch between schools. 

The ability to estimate models on cross-classified data also breaks down when residuals are 
integrated-out.  The numerical integration algorithms require nesting (or independence across 
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draws, so that two distributions may be termed siblings rather than parent-child).  This limits 
cross-classified models to continuous models only. 
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3.5. Missing Data and Character Variables 
Most third-party statistical packages internally reserve one or more special numerical values 

to represent the “missing value.”  Upon input and output, such missing values are typically 
represented by a period (“.”).  Raw2aml and aML do not support such missing values.  All 
numerical values must be legitimate numbers on the real line. 

This does not imply that you may not use aML if your data contain missing values.  It only 
implies that you need to resolve missing values before transforming your data into aML-format 
using raw2aml.  One method for resolving missing values is to impute them.  Another common 
method is to generate a separate indicator variable which flags whether the original variable is 
missing.  If the original variable is missing, the indicator variable is one; else, it is zero.  Now that 
there is a flag for missing values, missing values of the original variable may be set to some 
legitimate numerical value, such as zero or the mean over nonmissing values.  (The latter provides 
a test for whether the variable is missing randomly.)   

Before writing out ASCII data, make sure that all missing values are resolved.  If periods (“.”) 
inadvertently enter ASCII data, raw2aml will abort with an error message.  It will attempt to 
diagnose the problem and communicate its findings.  

In rectangular data, it is important to distinguish between missing and irrelevant values.  
Irrelevant values occur when a level 2 or lower branch has fewer subbranches than the maximum 
number in the data.  Irrelevant should be set to -99 before creating ASCII data files.  Raw2aml will 
recognize that they are irrelevant and discard them.  The aML-formatted data will only contain 
relevant values.  Missing values occur, for example, when a respondent is not able or willing to 
respond to a question.  These values must be resolved before creating ASCII data files. 

Finally, aML does not support character string variables with values such as “abc” or 
“yourname”.  Only numerical variables are supported.  If a character string inadvertently enters 
ASCII data, raw2aml will abort with an error message.  Note that values like “1.23E+02” 
(without the double quotes) are interpreted correctly as numerical, not string values. 

 



126 4.  Multilevel and Multiprocess Models 
 

 

U
se

r’s
 G

ui
de

 

4. Multilevel and Multiprocess Models 

This chapter discusses multilevel and multiprocess models.  It assumes that you are familiar 
with the basics of model formulation and estimation (Section 2.1) and multilevel data preparation 
(Chapter 3).  Section 4.1 explains multilevel models with unobserved heterogeneity, including 
multiple levels of unobserved heterogeneity.  Section 4.2 explains multiprocess models, i.e., 
models with correlation across multiple types of outcomes.  All sample data and control files used 
in this chapter may be found in the “Samples\Chapter4” directory. 

4.1. Multilevel Modeling with Unobserved Heterogeneity 
This section discusses models with unobserved heterogeneity.  Section 4.1.1 explains how to 

estimate normally distributed unobserved heterogeneity in a two-level model.  Section 4.1.2 
extends the discussion to models with more than two levels and multiple nested heterogeneity 
components.  Section 4.1.3 explains how to specify heterogeneity that follows a finite mixture 
distribution. 

4.1.1. Two-Level Modeling with Unobserved Heterogeneity 

This section explains how to incorporate stochastic variation (heterogeneity) in its most 
widely used form, a univariate normally-distributed residual. 

Statistical models always include some error term to account for an imperfect fit between 
explanatory covariates and the outcome of interest.  The error term is often explicitly written down 
in the form of a residual; in some cases, such as in hazard models, the error term is implicit.  By 
their very nature, not much information is available on error terms.  In most cases, we make some 
assumptions on residuals, such as that they are distributed according to some specific distribution.  
In many applications, however, particularly in multilevel settings, more information is available.  
For example, we may know that part of the error stems from unmeasured factors at some 
aggregated unit of observation, whereas the remaining stochastic variation is at the lower level.  
More generally, there may be multiple sources of stochastic variation, often corresponding to 
nested levels. 

An important implication of stochastic variation at multiple levels is that repeated outcomes 
may not be independent.  For example, suppose a mother’s decision to deliver her baby in a 
hospital (as opposed to at home or elsewhere) is in part determined by her long-run health status, 
observed by the mother but unobserved by the analyst.  Treating multiple hospital deliveries per 
mother as independent observations may lead to biased estimates of parameters and/or their 
standard errors.  Instead, one must take into account that the multiple outcomes are correlated. 
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! Capturing correlation across outcomes requires two important steps.  First, in the data 
preparation stage, the user must indicate which outcomes are correlated by assigning 
them the same value of an identifying variable, i.e., the same ID.  Second, in the model 
specification, the user must specify separate residuals for various levels that are the 
source of stochastic variation. 

We discuss two examples, one probit and one hazard.  Other processes are analogous. 

Example:  Probit Model with Heterogeneity 

We are interested in the decision to deliver babies in a hospital versus at home or elsewhere, 
and have data on one or more births per female respondent.  Section 3.2.1 above described the 
two-level data creation process.  If you have not yet read that section, please do so now.  Children 
are nested within mothers, so mothers form level 1 and children are at level 2.  In other words, 
each child corresponds to a level 2 branch.  The data, “hospital.dat” and their documentation 
file “hospital.sum” are in “Samples\Chapter3”; the aML control and output files are in 
“Samples\Chapter4”. 

We model the decision to deliver in a hospital as a probit: 
H X uj j j

* = ′ + +β ε , 

where H j
*  indicates the propensity that a woman delivers baby j ( j J= 1, ,… ) in a hospital.  We 

suppress the woman-subscript.  If H j
* < 0 , the baby is not delivered in a hospital ( H j = 0 ), and if 

H j
* ≥ 0 , the baby is delivered in a hospital ( H j = 1 ).  Observed characteristics at the woman and 

child level are captured by X j ; unmeasured characteristics are in part woman-specific and 
constant across all her J births ( ε ), and in part specific to individual births ( uj ).  Denote the 
standard deviation of ε  by σ ε ; we normalize the standard deviation of the transitory residual, 
σ u = 1 . 

In order to identify the standard deviation of the heterogeneity component, we need multiple 
outcomes on at least a subset of the observations; that requirement is fulfilled, because the data 
contain 501 mothers with a total of 1,060 children.  As indicated by “hospital.sum”, the 
maximum number of children per woman (maximum number of level 2 branches in any 
observation) is ten.  Not shown is that 48 percent of the women in the data had only one child.  
These observations do not contribute to the identification of unobserved heterogeneity, but they do 
provide information on parameters β . 

The outcome of interest ( H j ) is variable hospital; explanatory variables are income 
(income), distance (from home to the nearest hospital, in km), and educ (education level of the 



128 4.1.  Multilevel Modeling with Unobserved Heterogeneity 

 

U
se

r’s
 G

ui
de

 

mother, coded 1 for less than high school, 2 for high school graduates, and 3 for college 
graduates).  Maternal education is a level 1 variable; all others may vary from birth to birth. 

To ensure smooth convergence of the maximum likelihood process, it is important to specify 
good starting values (Chapter 6).  This, in turn, requires that you build up models step-by-step.  In 
particular, start with only one residual and add heterogeneity at a later stage.  aML control file 
hosp1.aml specifies the first model, a simple probit without heterogeneity.  Having estimated 
this model, we move to hosp2.aml: 

  1 option title = "Hospital delivery with heterogeneity"; 
  2  
  3 dsn = ..\Chapter3\hospital.dat; 
  4  
  5 define regressor set BetaX; 
  6    var = 1 log(income) distance (educ==1) (educ==3); 
  7  
  8 define normal distribution; dim=1; number of integration points = 6; 
  9    name = eps; 
 10  
 11 probit model; 
 12    outcome = hospital; 
 13    model = regset BetaX + 
 14       intres(draw=1, ref=eps); 
 15  
 16 starting values; 
 17  
 18 Constant    TT   -1.5731679635 
 19 lnIncome    TT     .2642240564 
 20 distance    TT    -.0403876943 
 21 dropout     TT    -.9210922669 
 22 college     TT     .5029232968 
 23 SigmaEps    FT     .6 
 24 ; 

Line 1 specifies an optional title.  It only serves to document the main purpose of this run and 
will be printed at the beginning of the output file.  Line 3 specifies the data set. 

Line 5-6 define the regressors.  We specify the logarithm of income and indicator variables 
for high school drop-outs and college graduates as explanatory variables. 

Lines 8-9 specify the distribution of the heterogeneity component.  The normal distribution 
was first introduced for continuous models (Section 2.3).  New is the optional “number of 
integration points=6”.  It is used here because we will be integrating ε  out numerically.  See 
below. 

Lines 11-14 specify the probit model.  Line 14 indicates that residual eps needs to be 
integrated out (“intres” is short for “integrated residual”); see below.   
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! 
Since ε  is specific to the mother, its value must be constant across all hospital 
outcomes of any one woman.  In other words, the same “draw” applies to all hospital 
outcomes.  We therefore wrote draw=1, but draw=247 or draw=_id or draw=expr 
where expr is any positive integer-valued expression or variable that takes on the 
same value within any one observation would give identical results.  Section 4.1.2 
provides details on correlated and independent draws.  

The starting values were taken from converged estimates of hosp1.  There is one new 
parameter, the standard deviation of eps.  We initialize it arbitrarily at 0.6, which tends to be the 
right order of magnitude in most qualitative outcome models.  We often find that the maximum 
likelihood search procedure has trouble improving the likelihood if standard deviations are 
initialized at (very close to) zero, as one may be inclined to do.   

Note that we optimize this model in two stages.  At first, the standard deviation of the 
heterogeneity component is fixed and the probit regressors are allowed to settle in.  In the second 
stage, all parameters are free.  Experience shows that freeing up too many parameters at once often 
leads to failure to converge. 

The control file does not specify transitory residual uj .  If no non-integrated residual is 
specified in a probit model, aML implicitly assumes a standard normally distributed residual.  The 
output file, hosp2.out, does write out this residual explicitly (line 54, not shown here): 
“res(draw=_iid, ref=N(0,1))”.  We could have included this line in the control file; 
draw=_iid automatically generates a new draw for every subbranch; ref=N(0,1) references an 
implicitly defined standard normal residual.  We could have defined and used an explicit residual, 
which would need to be drawn using a variable that takes unique values for every child.   

The stochastic variation that generates heterogeneity is typically specified as a residual which 
is specific to a unit that is at a higher conceptual level than the outcome.  In this case it is a mother.  
The unobserved heterogeneity component (residual) takes on the same value (draw) for all 
outcomes of a particular mother.  The covariance matrix of ε + uj  is 

Σε ε εσ σ+ + = ′ +u u J J u JI,
2 21 1 , 

where 1J  is a J-dimensional vector of ones, and I J  is the J-by-J identity matrix.  For example, 
with J=3, 

Σε ε

ε ε ε

ε ε ε
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σ σ σ σ
σ σ σ σ
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2 2 2 2
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The likelihood of J probit outcomes thus involves a J-dimensional cumulative normal 
integral, which is computationally very intensive for higher values of J.  aML only supports such 
integrals for J ≤ 3.  For higher values, residual ε  must be integrated out numerically.  The joint 
likelihood of J probit outcomes may be written as: 
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where f ( ) /ε φ ε σ ε= b g  is the probability density function of ε .  The J-dimensional cumulative 
normal distribution has thus been reduced to a product over J univariate cumulative normal 
distributions, which is far easier to compute. 

In short, unobserved heterogeneity in probit models may be specified as 

res(draw=expr, ref=residualname) 

provided that there are no more than three probit outcomes in any one observation.  In most 
applications, there are more than three outcomes, and the residual must then be integrated out: 

intres(draw=expr, ref=residualname) 

Even with three or fewer probit outcomes, you may tell aML to integrate-out the residual.  We 
recommend that you always integrate-out unobserved heterogeneity components in probit models, 
because it reduces errors and because the integration algorithm tends to be faster than bivariate 
and trivariate cumulative normal probability algorithms.  The same holds for ordered probit and 
normal interval models.   

In continuous models, a closed-form solution to the likelihood function exists, and you have a 
choice between specifying the residual directly (“res”) or integrated-out (“intres”).  In 
(ordered) logit, hazard, binomial, and negative binomial models, no closed-form solution exists, 
and the residual must be integrated out (“intres”).  We recommend that you specify the residual 
directly (“res”) in continuous model statements, even though the same residual may be integrated 
out (“intres”) in other, jointly estimated model statements. 

aML integrates-out residuals using a numerical integration algorithm based on Gauss-Hermite 
Quadrature (e.g., Abramowitz and Stegun, 1972, pp 890 and 924).  This algorithm selects a 
number of support points and weights such that the weighted points approximate the normal 
distribution.  The higher the number of support points, the more accurate the approximation, but 
the slower the computation.  By default, aML approximates univariate normal distributions by 12 
points (Section 13.2.6).  In the example, we instead instructed aML to use only six points. 

Technical Note:  Numerical integration 

Many models require that one or more residuals are integrated out.  Where a closed form 
solution to the integral does not exist, the likelihood may be computed by approximating the 
normal integral by a weighted sum over “conditional likelihoods,” i.e., likelihoods conditional on 
certain well-chosen values of the residual.  aML offers Gauss-Hermite Quadrature to approximate 
normal integrals (e.g., Abramowitz and Stegun, 1972, pp 890 and 924):  

φ ε εb g b g b gL dx w L el l
l

k

≈
=−∞

∞

∑z
1
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where wl  and xl  are Gauss-Hermite weights and support points, respectively.  The user has 
control over the number of support points k; the higher the number of points, the more precise the 
approximation (and the more time it takes aML to compute the likelihood).  The figures below 
illustrate the support points (horizontal axis) and weights (height of the bars) implied by four and 
seven support points, respectively.   

Utility program points, bundled with the aML package, provides support points and weights 
for the univariate standard normal distribution.  It is documented in Section 15.4.  For example, 
typing “points 4” from the command line gives the approximation with four points (also see the 
left figure above): 

 point weight 
1 -2.334414 0.0458759 
2 -0.741964 0.4541241 
3 0.741964 0.4541241 
4 2.334414 0.0458759 

In hosp2.aml, we replace the integral over ε  by a sum over six support points (number of 
integration points=6).  The higher the number of support points, the more accurate the 
approximation of the normal distribution.  In practice, we find that four or six points provide 
estimates that are close to accurate; for the final run, a higher number, like twelve, is 
recommended.  To illustrate the differences, the table below shows parameter estimates without 
heterogeneity and with heterogeneity that is integrated-out with four, six, and 20 support points: 

 no heterogeneity 4 points 6 points 20 points 
     
Constant -1.5732 *** -1.8814 *** -1.8869 *** -1.8957 *** 
 (0.1984) (0.2444) (0.2453) (0.2458) 
lnIncome 0.2642 *** 0.3136 *** 0.3139 *** 0.3148 *** 
 (0.0301) (0.0354) (0.0356) (0.0356) 
distance -0.0404 *** -0.0424 ** -0.0423 ** -0.0420 ** 
 (0.0142) (0.0175) (0.0176) (0.0176) 
dropout -0.9211 *** -1.1405 *** -1.1428 *** -1.1449 *** 
 (0.0787) (0.1403) (0.1431) (0.1439) 

W
ei

g
h
ts

Support points
 

-3.75 -2.37 -1.15 0 1.15 2.37 3.75

.000548
.031
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.454
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 no heterogeneity 4 points 6 points 20 points 
college 0.5029 *** 0.6021 *** 0.6016 *** 0.6006 *** 
 (0.1453) (0.2286) (0.2307) (0.2319) 
SigmaEps  0.6871 *** 0.7043 *** 0.7100 *** 
  (0.0961) (0.1010) (0.1034) 
     
ln-L -538.49 -523.77 -523.65 -523.59 

The table shows that most parameter estimates are substantially different with and without 
heterogeneity.  However, the differences between estimates based on four, six, and 20 support 
points are relatively minor.  The column with six points is based on “hosp2.out”; it shows that 
σ ε  is estimated at a very significant 0.7043. 

You may, of course, define multivariate normal distributions and integrate those numerically.  
The number of required function evaluations increases rapidly with the dimension of the 
distribution.  For example, with six integration points per dimension, a trivariate distribution 
requires 63=216 function evaluations.  By default, aML uses 12 points for univariate distributions, 
eight points for bivariate distributions (implying 64 function evaluations), and six points for 
distributions with three or more dimensions. 

Example:  Hazard Model with Unobserved Heterogeneity 

Stochastic variation (heterogeneity) in hazard and other types of models is implemented in the 
same way as in probit models.  In all models except continuous models (and probit models with up 
to three replications), the heterogeneity residual must be integrated out.  In continuous models, the 
residual may be integrated out, but estimation is often faster when the residual is included in the 
model as a (non-integrated) res, rather than an intres. 

We provide one more example, for hazard models.  Recall Section 2.4, in which we analyzed 
the timing of divorce for first marriages, and Section 3.2.2, in which we prepared three-level data 
for multiple marriages with time-varying covariates.  If you have not read those sections, please do 
so now.  Here we estimate all marriages jointly, including second and higher order.  Directory 
“Samples\Chapter3” contains the data (divorce3.dat); directory “Samples\Chapter4” 
contains the aML control and output files discussed below.  The data documentation file 
(divorce3.sum) indicates that there are 3,371 respondents with a total of 4,238 marriages, i.e., 
there are multiple marriages for at least a subset of the respondents.  The maximum number of 
marriages for any one respondent is six. 

The model is  
ln ( ) ( ) ( )h t T t X tj j= ′ + ′ +γ β δ , 

where subscript j to the marriage number; the respondent subscript is suppressed.  Level 1 is a 
respondent, level 2 a marriage, and level 3 an interval of a marriage spell.  Time-varying variables 
are constant over intervals, but may differ across intervals.  
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Building on our earlier estimates of the divorce hazard of the first marriage in “div2.out” 
(Section 2.4), we apply the model specification to the expanded data in “div3.aml”, include two 
dummy variables for marriage order, and estimate it.  (We first only estimate the intercept to allow 
for major differences between first marriages and subsequent ones.  In the second round, all 
parameters are freed up.)  We then add heterogeneity in “div4.aml”: 

  1 option normweight = weight; 
  2  
  3 dsn = ..\Chapter3\divorce3.dat; 
  4  
  5 define spline DurMar; nodes = 1 4 15 25; 
  6  
  7 define regressor set Getdiv; 
  8    var = 1 (marnum==2) (marnum>=3) heblack (hiseduc<12) (hiseduc>=16) 
  9   (agediff>10) (agediff<-10) (heblack!=sheblack) 
 10   numkids; 
 11  
 12 define normal distribution; dim=1; number of integration points = 4; 
 13    name= delta; 
 14  
 15 hazard model; 
 16    censor=censor; duration=lower upper; timemarks=time; 
 17    model = durspline(origin=0, ref=DurMar) + 
 18       regset Getdiv + 
 19       intres(draw=1, ref=delta); 
 20  
 21 starting values; 
 22  
 23 dur0-1      TT     1.818046395 
 24 dur1-4      TT     .0909935637 
 25 dur4-15     TT     -.038456674 
 26 dur15-25    TT    -.0238131819 
 27 dur25+      TT    -.1297594318 
 28 Constant    TT   -5.6057629476 
 29 mar2        TT     .2381876859 
 30 mar3+       TT     .6093417913 
 31 heblack     TT      .010438415 
 32 mixrace     TT     -.316479448 
 33 dropout     TT    -.3047659902 
 34 college     TT    -.5210636007 
 35 heolder     TT     .1990443217 
 36 sheolder    TT     .3600968963 
 37 numkids     TT    -.0788632828 
 38 SigDelta    FT      .6 
 39 ; 

Note line 8, where we added two dummy variables to the regressors.  The first, (marnum==2) 
captures second marriages; the second, (marnum>=3) captures third and higher order marriages.  
The omitted category is first marriages.  

Lines 12-13 define the heterogeneity distribution in the same way as seen in the probit model.  
Line 19 includes δ  (delta) in the hazard model.  Since δ  is specific to the respondent, its value 
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is the same in all marriages.  This is achieved by draw=1, i.e., draw is the same for all marriage 
spells.  See Section 4.1.2 for more details on correlated and independent draws. 

Lines 21-39 specify the starting values.  We took converged estimates from div3 and added 
the standard deviation of the heterogeneity distribution, SigDelta at an initial value of 0.6.  As 
before, we were careful not to estimate all parameters at once.  First we allowed all parameters to 
settle in under the specification with heterogeneity, and only then did we estimate all parameters.  
The results are in “div4.out”; we summarize them along with those from div3 using the mktab 
utility: 

 div3 div4 
   
dur0-1 1.8180 *** 1.8266 *** 
 (0.4587) (0.4615) 
dur1-4 0.0910 ** 0.1361 *** 
 (0.0439) (0.0459) 
dur4-15 -0.0385 *** -0.0112 
 (0.0108) (0.0120) 
dur15-25 -0.0238 -0.0152 
 (0.0163) (0.0165) 
dur25+ -0.1298 *** -0.1253 *** 
 (0.0207) (0.0208) 
Constant -5.6058 *** -6.0942 *** 
 (0.4144) (0.4240) 
mar2 0.2382 *** -0.2664 ** 
 (0.0875) (0.1249) 
mar3+ 0.6093 *** -0.5792 *** 
 (0.1439) (0.2107) 
heblack 0.0104 -0.0358 
 (0.1385) (0.1718) 
dropout -0.3165 *** -0.3447 *** 
 (0.0634) (0.0794) 
college -0.3048 *** -0.3488 *** 
 (0.0874) (0.1068) 
heolder -0.5211 *** -0.5075 *** 
 (0.1729) (0.1868) 
sheolder 0.1990 0.2332 
 (0.2477) (0.2975) 
mixrace 0.3601 ** 0.4982 *** 
 (0.1526) (0.1904) 
numkids -0.0789 *** -0.1120 *** 
 (0.0252) (0.0291) 
SigDelta  0.9996 *** 
  (0.1099) 
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ln-L -7176.11 -7162.88 
   
NOTE: Asymptotic standard errors in parentheses; 
      Significance: '*'=10%;  '**'=5%;  '***'=1%. 

Note that the standard deviation of δ  is 0.9996 and significantly different from zero.  In other 
words, there are unmeasured respondent-specific characteristics which affect all marriages in 
which respondents engage.  Failure to account for these has several consequences.  First, a 
specification in which correlation across marriages of the same person is ignored (div3) tends to 
underestimate the standard errors of parameter estimates, creating false impression of precision.  
Second, estimates of the baseline duration pattern are biased in downward direction.22  Third, 
estimates of indicators for second and higher order spells are biased upward.  The conclusion from 
div3 would be that higher order marriages are more prone to divorce, whereas div4 shows that 
this is entirely due to heterogeneity.  Individuals with unmeasured characteristics which help 
stabilize marriages tend to remain in their first marriage; second and higher order marriages are 
dominated by individuals with “risky” characteristics.  For the average person, higher order 
marriages are in fact more likely to survive, as the negative coefficients on variables mar2 and 
mar3+ in div4 show. 

4.1.2. Multilevel Modeling with Multilevel Unobserved Heterogeneity 

The previous section illustrated models with repeated outcomes at level 2 and a single 
unobserved heterogeneity component that accounted for their correlation.  We now show how to 
specify models with multiple levels of heterogeneity.  The heterogeneity components illustrated 
here are nested but independent; Section 4.2 explains correlated heterogeneity components in a 
multiprocess environment. 

Consider data on schools (level 1) with one or more students (level 2).  Each student was 
enrolled one or more years (level 3) and took multiple tests each year (level 4).  Suppose you are 
interested in analyzing test scores.  In addition to controls for various observed explanatory 
covariates, you wish to allow for school-specific effects, for example because some schools are 
more successful at creating an environment that fosters student learning than others.  You also 
wish to allow for student-specific effects, for example because some students are more intelligent 
than others.  You also wish to allow for effects that are specific to year-in-school, for example 
because students’ home situation may be more conducive to learning in some years than in others.  
Finally, you wish to allow for remaining variation at the test level.  The first three effects are 

                                                           
22 The best way of understanding this is by imagining a process with a constant hazard, say, repeated 

throws with a dice where the players stop playing when they throw a six.  If there is heterogeneity, for 
example because the dice are manipulated, players with “lucky” dice will be among the first to stop playing.  
Initially, the aggregate hazard of throwing a six is 1/6, but after a while there are mostly “unlucky” dice left, 
so that the hazard appears to be lower than 1/6.   
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stochastic variation, or heterogeneity at levels higher than the specific test; the test-specific 
residual captures the lowest level of variation.  The data are included with the aML files under 
“Samples\Chapter3” and explained in detail in Section 3.2.3 above.  The control and output 
files of this section are in “Samples\Chapter4”. 

The model is a simple continuous outcome model with four nested residuals: 
s x uijk ijk i ij ijk= ′ + + + +β δ ε η , 

where outcome sijk  is the test score of student i in year j on test k.  The school (observation) 
subscript has been suppressed.  Explanatory covariates xijk  include indicators for whether the 
school is located in an innercity and whether it is a private school, the student’s sex and his 
parental education, whether he is duplicating the current school year, and class size.  
Heterogeneity component δ  captures unobserved school-specific characteristics, δ i  unobserved 
student-specific characteristics, and ηij  unobserved year-specific characteristics.  Residual uijk  
captures any remaining variation.  The likelihood function of the vector of all test scores for a 
school is the multivariate normal density function: 

L S X S X
k

= − − ′ −RST
UVW

− − −2 2
1

2 1
2

1π β βb g b g b gΣ Σexp , 

where S is the vector of stacked score outcomes, X the matrix of covariates, and Σ  the joint 
covariance matrix.  For example, consider a school with two students who attended two and three 
years and took two tests each every year.  Its equations may be written as: 

S X U= + + + +β δ ε ηδ ε ηΛ Λ Λ , i.e., 
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and the joint covariance matrix is 
Σ Λ Σ Λ Λ Σ Λ Λ Σ Λ Σ= ′ + ′ + ′ +δ δδ δ ε εε ε η ηη η uu , 
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where Σδδ δσ= 2 , Σεε εσ= I2
2 , Σηη ησ= I5

2 , Σuu uI= 10
2σ , and In  is the n-dimensional identity 

matrix. 

Note that the same draw of δ  applies to all outcomes in the school (observation).  Similarly, 
one draw of ε i  applies to all tests of student i, but independent draws apply to other students at the 
same school.  One draw of ηij  applies to all tests of student i in year j, but independent draws 
apply to tests in other years and of other students.  All draws of uijk  are test-specific and thus 
independent from everything else.  In other words, the residual components are nested.   

In the data, students are identified by a student ID variable, student, which is unique within 
a school but not across schools.  Years in school are identified by variable year.  There are up to 
18 students per school, up to six years in school per student, and up to seven tests per year in 
school.  The model may be specified as follows (school.aml): 

  1 option maximum number of residual draws = 400; 
  2 option maximum model space = 15000; 
  3 dsn = ..\Chapter3\school.dat; 
  4  
  5 define regset BetaX; 
  6    var = 1 innercty private male (dadeduc==1) (dadeduc==3) 
  7          (momeduc==1) (momeduc==3) retain clssize; 
  8  
  9 define normal distribution; dim=1; name=delta; 
 10 define normal distribution; dim=1; name=eps; 
 11 define normal distribution; dim=1; name=eta; 
 12 define normal distribution; dim=1; name=u; 
 13  
 14 continuous model; 
 15    outcome = score; 
 16    model = regset BetaX + 
 17     res(draw=1, ref=delta) + 
 18     res(draw=student, ref=eps) + 
 19     res(draw=10*student+year, ref=eta) + 
 20     res(draw=_iid, ref=u); 
 21  
 22 starting values; 
 23  
 24 Constant    TTTT      6.532314 
 25 innercty    TTTT     -.1763978 
 26 private     TTTT      .3150571 
 27 male        TTTT     -.1417327 
 28 dad<HS      TTTT     -.2965861 
 29 dad>HS      TTTT      .3286746 
 30 mom<HS      TTTT     -.3543066 
 31 mom>HS      TTTT      .4040352 
 32 retain      TTTT     -.3711627 
 33 clssize     TTTT      .0054275 
 34 SigDelta    FTTT      .43 
 35 SigEps      FFTT      .43 
 36 SigEta      FFFT      .43 
 37 SigU        TTTT      .43 
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 38 ; 

For now please ignore lines 1 and 2.  Line 3 specifies the data set and lines 5-7 defines the 
explanatory covariates.  Lines 9-12 define four independent univariate distributions corresponding 
to δ , ε i , ηij , and uijk , respectively.  Lines 14-20 specify the continuous outcome model.  aML 
determines that the outcome, score, is a level 4 variable, and will loop over all level 4 branches 
in the data to compile an equation. 

The important portion of this control file is in the residual draw specifications of lines 17-20.  
The same δ , i.e., the same draw of δ  applies to all test score equations of a particular school 
(observation).  This is achieved by “draw=1”: the draw is the same for all equations.  The actual 
draw value is irrelevant; the important thing is that the draw value is the same for all test scores.  
We could thus have specified “draw=348” or “draw=_id” or anything else that evaluates to the 
same value for all equations.  Residual ε i  is specified in line 18 with “draw=student”.  Recall 
that variable student is the student ID.  It takes on different values for each student, and aML 
accordingly draws a new ε i  for each student.  Residual ηij  is specified in line 19 with 
“draw=10*student+year”.  We needed to specify a draw expression that takes on the same 
value for all tests taken in a particular year, but different from all other years and students.  A 
“draw=year” would have been incorrect, because this would have assigned the same draw to all 
students’ test score equations in a given year, i.e., we would have specified η j  instead of ηij .  The 
maximum number of years any one student is in school is six, i.e., 1<=year<=6; this ensures that 
10*student+year is unique for every student and every year.  Residual uijk  is specified on line 
20 with “draw=_iid”.  This “_iid” is not a variable or expression; it is a keyword which ensures 
that the residual is drawn independently in every equation.  We could have specified 
“draw=100*student+10*year+testnum”, where testnum is the test number, with equivalent 
results. 

A thorough understanding of residual draws is critical to proper specification of multilevel 
models in aML.  Sections 4.1.2 and, in particular, 13.3.6 provide additional detail. 

Lines 22-38 specify starting values.  We first ran an ordinary least squares regression model 
using the (SAS, Stata, SPSS) data preparation package.  That model assumes a single transitory 
residual and ignores heterogeneity, but the resulting estimates tend to provide good starting values 
for more complicated specifications.  Alternatively, we could have started the constant at the mean 
of score and all other covariates at zero, but the maximum likelihood search procedure tends to 
be slow in finding solutions to simple continuous models.  See Section 6.5 for more tips on 
selecting starting values for continuous models.  The ordinary least squares regression estimated 
the root mean squared error of its residual to be 0.85625, i.e., a mean squared error (variance) of 
0.733.  For lack of better ideas, we roughly divided this variance over the four residuals: the 
square root of one-fourth of 0.733 is about 0.43, as on lines 34-37. 

We specified four rounds of optimization.  In the first, only the covariates and standard 
deviation of the transitory residual are estimated; in subsequent rounds, standard deviations of the 
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other residuals are freed up one-by-one.  Never be too ambitious when initially estimating 
complex multilevel models, as the search is prone to fail.  Instead, nudge the model in small steps 
to its full specification.23 

Lines 1 and 2 were inserted in response to aML’s complaints that insufficient scratch storage 
space was available for the model.  As shown in the data documentation file, “school.sum” 
(Section 3.2.3), there are as many as 343 tests in any one school, across all students and years in 
school combined.  This implies that there are as many as 343 independent draws of uijk .  By 
default, aML only allows up to 100 independent draws of any one distribution.  When we first ran 
this model, aML reported that this default value was exceeded and suggested that we increase it 
using “option maximum number of residual draws”.  In the next run, aML complained 
that insufficient scratch space was allocated to store (up to 343) model equation specifications.  It 
suggested that we increase the space using “option maximum model space”.  Lines 1 and 2 
allocate sufficient scratch space.  You do not have to worry about such allocations; aML will tell 
you what to do when it needs more space allocated. 

Output file “school.out” contains the results of estimation.   

4.1.3. Finite Mixture Heterogeneity 

In addition to normally distributed residuals, aML offers finite mixture distributions.  Only the 
univariate asymmetric finite mixture has been implemented.  Asymmetry refers to the lack of any 
restriction which forces symmetry of support points or weights around zero.  The mean of the 
distribution therefore depends on the location of support points and the weights.  This implies that 
one of the support points (or equivalently, the intercept) is not identified and must be fixed in the 
estimation procedure. 

Both support points and weights are implemented using aML’s vector building block.  A 
vector is a set of parameters and may be used directly to represent support points.  For example, 
the following defines a vector representing three support points: 

define vector Points; dim=3; 

Support points must be strictly increasing, which is achieved by the restriction that parameters 
in a vector definition are strictly increasing.  This restriction is imposed by default. 

Weights are also specified using a vector.  Since weights must always add up to one, a finite 
mixture distribution with n support points only has n-1 weights and thus requires a vector with 
dimension n-1.  With three support points: 

                                                           
23 If the model requires substantial computing time, as in the school test score example, you may wish to 

loosen convergence criteria for intermediate steps.  When we developed the example, we initially specified 
“option converge = wgn<4” (page 276).  This yielded results in the vicinity of the maximum likelihood 
parameters.  In a final run, we reverted to the default criterion (wgn<0.1). 
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define vector Weights; dim=2; 

This vector implies two parameters.  For technical reasons, these two parameters are not equal 
to the weights themselves.  Instead, the weights are transformations of the two parameters.  Recall 
that weights must always add up to one.  This restriction is implemented by computing weights as 
(cumulative normal) transformations of the elements of the vector forming the basis for weights.  
Denote elements of the vector by λ1  through λ n−1 ; weights w1  through wn  are: 

w
w

w
w
n n n

n n

1 1

2 2 1

1 1 2

11

=
= −

= −
= −

− − −

−

Φ
Φ Φ

Φ Φ
Φ

λ
λ λ

λ λ
λ

b g
b g b g

b g b g
b g

#  

Also see the figure.  Clearly, vector 
elements to be mapped into weights must be 
strictly increasing, which is aML’s default 
behavior for vectors.  A future release may 
allow for direct specification of weights; at 
present, you will need to transform vector 
estimates into weights yourself. 

! A finite mixture distribution is made up of support points and weights.  Points are 
given directly from a vector; weights are derived from another vector through a 
cumulative normal transformation.  The dimension of the weights vector is equal to the 
dimension of the points vector minus one.  Note that there is no relationship between 
the pints and weights vectors, except that they are both part of a finite mixture 
distribution. 

Section 4.1.1 showed an example in which hospital deliveries were modeled including a 
normally distributed heterogeneity component.  Building on that example, “hosp3.aml” shows 
the syntax incorporating finite mixture heterogeneity instead: 

  1 option title = "Hospital delivery with finite mixture heterogeneity"; 
  2  
  3 dsn = ..\Chapter3\hospital.dat; 
  4  
  5 define regressor set BetaX; 
  6    var = 1 log(income) distance (educ==1) (educ==3); 
  7  
  8 define vector Points;  dim=3; initial = GHQ points(std=.7042604784); 
  9 define vector Weights; dim=2; initial = GHQ weights; 
 10  
 11 define finite mixture distribution; dim=1; 
 12    form = asymmetric; 
 13    points = Points; 

λ1 λ2 

w1 w2 w3 

Mapping from n-1 vector elements to n weights 
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 14    weights = Weights; 
 15    name = eps; 
 16  
 17 probit model; 
 18    outcome = hospital; 
 19    model = regset BetaX + 
 20       intres(draw=1, ref=eps); 
 21  
 22 starting values; 
 23  
 24 Constant    T    -1.8868717781 
 25 lnIncome    T     .31390391051 
 26 distance    T    -.04228419725 
 27 dropout     T    -1.1428187936 
 28 college     T     .60158167422 
 29 point1      F     auto 
 30 point2      T     auto 
 31 point3      T     auto 
 32 weight1     T     auto 
 33 weight2     T     auto 
 34 ; 

Lines 8 and 9 define the vectors for finite mixture support points and weights.  (Ignore for 
now the optional “initial” statements in the vector definitions.)  Lines 11-15 define the finite 
mixture distribution.  It must always be univariate (dim=1) and asymmetric 
(form=asymmetric).  For the support points we specified vector Points, for the weights vector 
Weights.  Since Points was defined as a vector with three elements (dim=3), the finite mixture 
distribution will have three support points.  Correspondingly, the weights vector has two elements, 
because the third weight follows from the other two such that they add up to one.  Lines 17-20 
specify the probit model.  The finite mixture residual (line 20) enters as an integrated residual—
finite mixture residuals must always be integrated out.  The use of finite mixture residuals in 
model statements is exactly the same as the use of normally distributed residuals. 

The starting values of regressors were taken from converged values of the model specification 
with a normally distributed heterogeneity component in “hosp2.aml”.  Lines 29-33 instruct aML 
to automatically generate the starting values of the Points and Weights vectors.  This is an 
optional feature.  Starting values of vectors that serve as finite mixture support points and weights 
are the only building blocks for which you do not need to specify numerical starting values.  The 
“auto” starting values are invoked by the optional “initial” statements in the vector definitions; 
see lines 8 and 9: 

define vector Points;  dim=3; initial = GHQ points(std=.7042604784); 
define vector Weights; dim=2; initial = GHQ weights; 

The optional “initial=GHQ points” statement in line 8 indicates that the initial values 
(starting values) of this vector should be equal to Gauss-Hermite Quadrature points that 
approximate a univariate normal distribution with standard deviation equal to 0.7042604784.  That 
standard deviation was the converged estimate of the standard deviation of the normally 
distributed heterogeneity component in “hosp2.out”.  Similarly, the optional “initial=GHQ 
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weights” statement on line 9 indicates that the initial values of this vector should be such that its 
elements map into Gauss-Hermite Quadrature weights.  In other words, we initialized the points 
and weights such that they correspond to the numerical approximation that would be used if we 
had specified a normally distributed residual with three points of support. 

File “hosp3.out” contains the output, including the starting values that apply: 

 82 Starting values: 
 83      Name      Est?     Value 
 84   1  Constant   T     -1.886872 
 85   2  lnIncome   T      0.313904 
 86   3  distance   T     -0.042284 
 87   4  dropout    T     -1.142819 
 88   5  college    T      0.601582 
 89   6  point1     F     -1.219815 
 90   7  point2     T      0.000000    (must be larger than predecessor) 
 91   8  point3     T      1.219815    (must be larger than predecessor) 
 92   9  weight1    T     -0.967422 
 93  10  weight2    T      0.967422    (must be larger than predecessor) 

Lines 89-91 indicate the automatically generated starting values of the support points.  Since 
we estimate an intercept, the first point must be fixed.  Lines 92-93 show the automatically 
generated starting values for the vector being transformed into weights.  The actual weights are 
w1 0 967422 01667= − =Φ . .b g , w2 0 967422 967422 0 6667= − =Φ Φ. -0.b g b g . , and 

w3 1 0 967422 01667= − =Φ . .b g .  The mean of the distribution is zero, and the standard deviation 

σ = w p w p w p1 1
2

2 2
2

3 3
2 2 2 201667 122 0 6667 0 01667 122 0 7043b g b g b g b g b g+ + = − + + =. * . . * . * . . , as 

it should be. 

The converged support points and weights differ somewhat from the values that best 
approximate the normal distribution with three points.  Unfortunately, no formal test is available 
to test for any significant departure from normality.  Heuristically, one may compare estimates of 
the regressors (which tend to be of most substantive interest) under normality (hosp2.out) and 
3-point finite mixture (hosp3.out): 

 hosp2 hosp3 
   
Constant -1.8869 *** -0.9026 *** 
 (0.2453) (0.3080) 
lnIncome 0.3139 *** 0.3083 *** 
 (0.0356) (0.0352) 
distance -0.0423 ** -0.0419 ** 
 (0.0176) (0.0177) 
dropout -1.1428 *** -1.1481 *** 
 (0.1431) (0.1377) 
college 0.6016 *** 0.5422 *** 
 (0.2307) (0.1972) 
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 hosp2 hosp3 
SigmaEps 0.7043 ***  
 (0.1010)  
point1  -1.2198 
   
point2  -0.0754 
  (0.7125) 
point3  0.9976 
  (1.1443) 
weight1  0.6825 
  (0.5744) 
weight2  1.7147 
  (1.2015) 
   
ln-L -523.65 -521.91 

For all practical purposes, in the current example, it does not matter much whether normality 
is assumed to be normal or 3-point finite mixture.  This result is specific to the current example 
and does not generalize. 
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4.2. Multiprocess Modeling 
All examples we discussed so far featured one or more repeated outcomes of the same type.  

This section illustrates multiprocess models, i.e., models with two or more substantively different 
outcomes.  Some examples of two-process models include health status and mortality; getting 
pregnant and finishing high school; marriage formation and marriage dissolution; job duration and 
annual wage income; fertility and divorce; use of health care and health outcomes; labor force 
participation and wage rate; et cetera.  Each process may, but need not, include repeated outcomes. 

We provide two illustrations involving two types of models; the concepts generalize to other 
types of models.  Section 4.2.1 discusses how correlation across equations from substantively 
different outcomes may be captured using multivariate normal distributions.  It limits the 
discussion to recursive models, i.e., models in which one type of outcome affects the other, but not 
vice versa.  Section 4.2.2 explains how to estimate fully simultaneous models in which all types of 
outcomes may affect all other types. 

4.2.1. Recursive Relationships of Replicated Outcomes 

Consider an extension of the hospital delivery example of Section 4.1.1.  We want to assess 
the benefits of delivering in a hospital for the health of the baby.  We start by estimating a child 
mortality hazard equation in which we control for whether the child was delivered in a hospital, 
but in which we treat hospital delivery as an exogenous covariate.  Data set “children.dat” is 
identical to the hospital delivery data (hospital.dat) used in Section 4.1.1, but also contains 
information on the children’s subsequent survival.  Variables censor, durvar1 and durvar2 
are mortality hazard spell censor and duration variables.  The mortality model is: 

lnh t T t Xj jb g b g= ′ + ′ +γ α δ  

where subscript j indicates child number.  The subscript for mothers (level 1) is suppressed.  The 
baseline log-hazard ′γ T tb g  is assumed to be piecewise linear in the child’s age; X j  represents 
regressors, including hospital delivery; and ε  captures unobserved heterogeneity at the mother 
level, δ σ δ~ ,N 0 2d i .  We build up the model in stages: “Samples\Chapter4\child1.aml” 

estimates a Gompertz baseline hazard only; “child2.aml” adds nodes and regressors; and 
“child3.aml” adds heterogeneity: 

  1 option title = "Child mortality w/ heterogeneity"; 
  2  
  3 dsn=children; 
  4  
  5 define spline Age; intercept; nodes = .25 1 10; 
  6 define regressor set AlphaX; var = (educ==1) (educ==3) boy hospital; 
  7 define normal distribution; dim=1; number of integration points=4; 
  8    name=delta; 



4.2.  Multiprocess Modeling 145 

 

U
se

r’s
 G

ui
de

 

  9  
 10 hazard model; 
 11    censor = censor; 
 12    duration = durvar1 durvar2; 
 13    model = durspline(origin=0, ref=Age) + 
 14            regset AlphaX + 
 15            intres(draw=1, ref=delta); 
 16  
 17 starting values; 
 18  
 19 Constant    TT     .3390926032 
 20 slope0      FT   -12.750487112 
 21 slope1      FT   -2.8845587617 
 22 slope2      FT    -.2507683224 
 23 slope3      FT     .0894649445 
 24 dropout     FT     .2666907388 
 25 college     FT   -1.7933428577 
 26 boy         FT     .1634632382 
 27 hospital    FT     -.346834987 
 28 SigDelta    TT      .6 
 29 ; 

The specification is similar to those of hazard models discussed above.  The “Age” spline 
with nodes at 3 months, 1 year, and 10 years serves as baseline duration dependency.  The 
regressors include maternal education (less than high school, college), sex of the child, and 
whether the child was delivered in a hospital.  The normal distribution’s residual represents δ .  It 
must be integrated out in hazard models (Section 4.1.1); we specify that the approximation uses 
four support points.  The starting values were taken from converged parameters of the 
specification without heterogeneity (child2.out).  We initialize the standard deviation of δ  to 
0.6, which tends to be the right order of magnitude.  The intercept and the standard deviation of 
the heterogeneity component are allowed to settle in before all parameters are freed up.  The 
results of estimation are (child3.out): 

Constant 0.1707 
 (0.2551) 
slope0 -12.6961 *** 
 (1.6691) 
slope1 -2.8445 *** 
 (0.6313) 
slope2 -0.2515 *** 
 (0.0673) 
slope3 0.0902 ** 
 (0.0385) 
dropout 0.2919 
 (0.1960) 
college -1.7943 ** 
 (0.7561) 
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boy 0.1880 
 (0.1592) 
hospital -0.3817 * 
 (0.2255) 
SigDelta 0.5887 *** 
 (0.2244) 
  
ln-L -818.74 

The hazard of mortality decreases sharply between birth and age three months; further 
decreases until the first birthday; slowly continues to decrease until the tenth birthday; and 
subsequently increases.  Children of better-educated women experience lower mortality risks and 
boys are at insignificantly elevated risks.  The coefficient of primary interest indicates that 
children that were delivered in hospitals face lower mortality risks (by a factor 
exp .-0.3817 0 68b g = , i.e., by 32 percent), but the effect is not very precisely estimated.  There is 
significant evidence that unobserved mother-specific characteristics affect children’s survival 
chances. 

Next consider incorporating the potential endogeneity of hospital delivery due to unmeasured 
mother attributes which affect both child mortality and the use of a hospital for delivery.  It is 
quite likely that the mothers themselves are aware of at least some of those characteristics.  What 
if they respond to this private knowledge such that those women who are at above-average risk of 
losing their baby decide to reduce the risks by delivering in a hospital?  If that is the case, variable 
hospital is correlated with residual δ , i.e., hospital may be endogenous to mortality risk.  
Correlation between explanatory covariates and residuals leads to biased estimates (e.g., Pindyck 
and Rubinfeld, 1991).  If the only source of correlation is at the mother level, then allowing for the 
correlation will eliminate the bias.  (Additional correlation at the child level would require the 
introduction of instruments, i.e., child-specific covariates affecting use of a hospital, but not 
directly affecting child mortality.) 

In the example, the same draw of delta applies to all children of a particular woman, and 
many women have multiple children.  The variance of mother-specific unmeasured characteristics 
may thus be determined, and we can account for mother-specific propensities to deliver in a 
hospital.  Women in fragile health (or otherwise aware that they are at above-average risk of 
losing their children) may at the same time have above-average propensity to deliver in hospitals.  
Hospital deliveries are thus disproportionately high-risk, but since we know the unobserved risk 
distribution, we also know the excess portion of high-risk cases that enter hospitals, and can 
correct accordingly.  In short, mother-specific unobservables may be captured by heterogeneity, 
and any biases they introduce may be eliminated. 

The bias due to mother-specific unobservables is eliminated by making the source of the bias 
part of the model.  In the example, the effect of hospital deliveries on mortality may be biased 
because of non-random hospital delivery decisions.  We therefore estimate a joint or multiprocess 
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model of child survival and the decision to deliver in a hospital.  We estimated a hospital delivery 
model with mother-specific heterogeneity (hosp2.aml) in Section 4.1.1 and combine it with 
converged estimates from “child3.aml” in child4.aml”: 

  1 option title = "Child mortality w/ endogenous hospital delivery"; 
  2  
  3 dsn=children; 
  4  
  5 /* Child mortality equation */ 
  6 define spline Age; intercept; nodes = .25 1 10; 
  7 define regressor set AlphaX; var = (educ==1) (educ==3) boy hospital; 
  8  
  9 /* Hospital delivery equation */ 
 10 define regressor set BetaX; 
 11    var = 1 log(income) distance (educ==1) (educ==3); 
 12  
 13 /* Mother-specific correlation across equations */ 
 14 define normal distribution; dim=2; number of integration points=4; 
 15    name=delta; 
 16    name=eps; 
 17  
 18 hazard model; 
 19    censor=censor; 
 20    duration = durvar1 durvar2; 
 21    model = durspline(origin=0, ref=Age) + 
 22            regset AlphaX + 
 23            intres(draw=1, ref=delta); 
 24  
 25 probit model; 
 26    outcome = hospital; 
 27    model = regset BetaX + 
 28       intres(draw=1, ref=eps); 
 29  
 30 starting values; 
 31  
 32 Constant    TT     .1707386712 
 33 slope0      FT   -12.696140815 
 34 slope1      FT   -2.8445023664 
 35 slope2      FT    -.2514847318 
 36 slope3      FT     .0902330242 
 37 dropout     FT     .2919458262 
 38 college     FT   -1.7942720568 
 39 boy         FT     .1880428793 
 40 hospital    TT    -.3816766978 
 41 Constant    TT    -1.8868717781 
 42 lnIncome    FT     .31390391051 
 43 distance    FT    -.04228419725 
 44 dropout     FT    -1.1428187936 
 45 college     FT     .60158167422 
 46 SigDelta    TT     .5886617221 
 47 SigmaEps    TT     0.7042604784 
 48 Rho         TT      0 
 49 ; 
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Lines 14-16 are new and specific to multiprocess models.  They define a bivariate normal 
distribution.  Lines 23 and 28 use the residuals, delta and eps, in model specifications in the 
same way as they were used in single process models.  Both are specified with “draw=1”, i.e., 
with the same draw.  This ensures that they will be correlated. 

! Residuals are correlated across equations if and only if (a) they were defined as part of 
the same multivariate distribution and (b) they have the same draw.  

As before, the actual draw number is irrelevant.  We could have specified “draw=143” or 
“draw=_id” or even “draw=educ”—all that matters is that they have the same draw number for 
all equations. 

We specified four points of integration for the bivariate distribution.  This approximation is 
taken in both dimensions, so the number of support points is 16.  All probit and hazard modules 
are thus evaluated 16 times, which you will notice in the computing time.  Higher-dimensional 
integrated distributions tend to slow down aML substantially.  We therefore recommend that you 
explore models with relatively few integration points, such as four in each dimension, and specify 
a higher number for the final run.  Since “child4.aml” represents our final specification, we re-
ran it in “child5.aml” with ten support points. 

The starting values of regressors are converged values of separate specifications of the two 
component models in “hosp2.out” and “child3.out”.  

! When specifying joint models, it tends to be very useful to initialize parameters at the 
converged values of single equation models. 

The only new parameter is the correlation between δ  and ε , “Rho”.  We initialize the 
correlation to zero, so that the initial parameterization of the joint model is the same as the two 
separate models.  (This may be verified by checking the log-likelihoods of the converged separate 
models and the first iteration of the joint model: -523.65 + -818.74 = -1342.39.) 

A zero-mean bivariate normal distribution is fully specified with two standard deviations and 
a correlation; the standard deviations are initialized first, followed by the correlation.  See Section 
13.2.6 for trivariate and higher-dimensional distributions. 

To compare the estimates in the single equation probit (hosp2.out) and hazard 
(child3.out) models to the joint model with four support points (child4.out) and with ten 
points (child5.out), we type: 
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mktab  child3 + hosp2  child4  child5 

 child3+hosp2 child4 child5 
    
Constant 0.1707 0.2727 0.2540 
 (0.2551) (0.2648) (0.2665) 
slope0 -12.6961 *** -12.5711 *** -12.6035 *** 
 (1.6691) (1.6877) (1.6881) 
slope1 -2.8445 *** -2.8735 *** -2.8509 *** 
 (0.6313) (0.6363) (0.6373) 
slope2 -0.2515 *** -0.2483 *** -0.2527 *** 
 (0.0673) (0.0692) (0.0692) 
slope3 0.0902 ** 0.0907 ** 0.0926 ** 
 (0.0385) (0.0394) (0.0394) 
dropout 0.2919 0.2121 0.2277 
 (0.1960) (0.2081) (0.2098) 
college -1.7943 ** -1.7383 ** -1.7267 ** 
 (0.7561) (0.7765) (0.7771) 
boy 0.1880 0.1795 0.1808 
 (0.1592) (0.1594) (0.1597) 
hospital -0.3817 * -0.6680 ** -0.6395 ** 
 (0.2255) (0.2838) (0.2878) 
Constant -1.8869 *** -1.9177 *** -1.9149 *** 
 (0.2453) (0.2518) (0.2513) 
lnIncome 0.3139 *** 0.3181 *** 0.3175 *** 
 (0.0356) (0.0365) (0.0365) 
distance -0.0423 ** -0.0432 ** -0.0426 ** 
 (0.0176) (0.0186) (0.0186) 
dropout -1.1428 *** -1.1389 *** -1.1392 *** 
 (0.1431) (0.1466) (0.1466) 
college 0.6016 *** 0.6120 ** 0.6080 ** 
 (0.2307) (0.2382) (0.2376) 
SigDelta 0.5887 *** 0.6376 *** 0.6466 *** 
 (0.2244) (0.2197) (0.2137) 
SigmaEps 0.7043 *** 0.7214 *** 0.7213 *** 
 (0.1010) (0.1053) (0.1053) 
Rho  0.5180 * 0.4698 
  (0.2873) (0.2941) 
    
ln-L -1342.38 -1340.95 -1340.99 
NOTE: Asymptotic standard errors in parentheses; 
      Significance: '*'=10%;  '**'=5%;  '***'=1%. 

Compare the separate equations in the first column with joint estimates in the second.  We 
boxed the coefficient of primary interest capturing the effect of hospital deliveries on child 
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mortality risk.  This coefficient increases substantially when we estimate the model jointly.  Joint 
estimation reveals that the beneficial effects are substantially understated if endogeneity of 
hospital delivery is ignored.  Indeed, we find a positive correlation coefficient between 
unobservables affecting the hospital decision and the mortality risks ( ρδε = 052. ).  In other words, 
women with above-average risks of losing a baby (δ > 0 ) also tend to have above-average 
propensities to deliver in a hospital ( ε > 0 ); and vice versa. 

None of the other coefficients changes much when we estimate the model jointly.  This was to 
be expected for the hospitalization probit equation, as there is no endogeneity bias issue in this 
equation.  Not much changed in the mortality equation either, but this result does not generalize.  
In general, endogeneity of a single covariate may bias the coefficient estimates of all covariates in 
that equation. 

Comparing the second and third columns, it did not make much difference whether we 
approximated the bivariate normal distribution by four or ten points per dimension.  The main 
difference is that the correlation coefficient loses its already marginal significance.  Despite its 
insignificance, the correlation induces a bias in the effect of hospitalization.  We recommend to 
always run a final model with a relatively large number of approximation points. 

4.2.2. Classical Simultaneous Equations in Continuous Outcomes 

The previous section explained how to estimate simultaneous equations which are recursive 
(and have multiple replications), i.e., in which the outcome of one equation enters another 
equation, while the other outcome does not affect the first equation.  The current section explains 
fully simultaneous equations, in which two or more outcomes mutually affect each other.  This 
section illustrates the use of the matrix building block and the elements of its inverse. 

The specification of simultaneous models is non-trivial and requires some careful algebra on 
the user’s part prior to model estimation.  Consider the following system of two simultaneous 
continuous equations: 

y y x x u
y y x x u

1 1 2 0 1 1 2 2 1

2 2 1 0 2 2 3 3 2

= + + + +
= + + + +

γ α α α
γ β β β

           
          

 

where u1  and u2  are jointly normally distributed with standard deviations σ 1  and σ 2  and 
correlation coefficient ρ12 .  Running simple regressions with y2  as explanatory covariate in the 
equation for y1 , and vice versa, would violate the requirement that explanatory covariates are 
independent of the error term.  Instead, the system may be written as 

y y x x u
y y x x u

1 1 2 0 1 1 2 2 1

2 1 2 0 2 2 3 3 2

− = + + +
− + = + + +

γ α α α
γ β β β

           
          

 

or, in matrix notation: 
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Γ
y
y

X
X

u
u

1

2

1

2

F
HG
I
KJ =

′
′
F
HG
I
KJ +
F
HG
I
KJ

α
β

,  where Γ =
−

−
F
HG

I
KJ

1
1

1

2

γ
γ

. 

Premultiply both sides by the inverse of Γ : 

y
y

X
X

u
u

1

2

1 1 1

2

F
HG
I
KJ =

′
′
F
HG
I
KJ +
F
HG
I
KJ

− −Γ Γ
α
β

 

The two equations may be written in reduced form: 
y X X u u

y X X u u
1 11 12 11 1 12 2

2 21 22 21 1 22 2

= ′ + ′ + +

= ′ + ′ + +

δ α δ β δ δ

δ α δ β δ δ
b g b g
b g b g , 

where Γ−
−

=
F
HG

I
KJ =

−
−
F
HG

I
KJ =

−
F
HG

I
KJ

1 11 12

21 22

1

2

1

1 2

1

2

1
1

1
1

1
1

δ δ
δ δ

γ
γ γ γ

γ
γ

, and therefore 

δ γ γ
δ γ γ γ
δ γ γ γ
δ γ γ

11 1 2

21 2 1 2

12 1 1 2

22 1 2

1 1
1
1

1 1

= −
= −
= −
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The solution offered by aML involves the definition of a matrix Γ  and the direct use of 
elements of the inverse matrix Γ−1  in model specifications.  In other words, by defining matrix 
Γ , you have direct access to δ 11 , δ 12 , δ 21 , and δ 22 , with all implied restrictions on Γ  
automatically imposed. 

Control file “Samples\Chapter4\simul.aml” shows how to set up the problem. 

  1 dsn = simul.dat; 
  2  
  3 define regset AlphaX; var = 1 x1 x2; 
  4 define regset BetaX;  var = 1    x2 x3; 
  5  
  6 define normal distribution; dim=2; 
  7    name=u1; 
  8    name=u2; 
  9  
 10 define matrix Gamma; dim=(2,2); 
 11  
 12 continuous model; 
 13    outcome = y1; 
 14    model = par inv(Gamma(1,1))*regset AlphaX +  
 15            par inv(Gamma(1,2))*regset BetaX +  
 16            par inv(Gamma(1,1))*res(draw=1, ref=u1) +  
 17            par inv(Gamma(1,2))*res(draw=1, ref=u2); 
 18  
 19 continuous model; 
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 20    outcome = y2; 
 21    model = par inv(Gamma(2,1))*regset AlphaX +  
 22            par inv(Gamma(2,2))*regset BetaX +  
 23            par inv(Gamma(2,1))*res(draw=1, ref=u1) +  
 24            par inv(Gamma(2,2))*res(draw=1, ref=u2); 
 25  
 26 starting values; 
 27  
 28 Alpha0     TT    1.119339 
 29 Alpha1     TT    .5028963 
 30 Alpha2     TT   -.2359311 
 31 Beta0      TT   -3.392511 
 32 Beta2      TT    2.725859 
 33 Beta3      TT    .1036613 
 34 sigma_u1   TT    .46658 
 35 sigma_u2   TT    1.4816 
 36 rho_u1u2   FT     0 
 37 One        FF     1          /*  not estimated  */ 
 38 MinGam2    TT     0 
 39 MinGam1    TT     0 
 40 One        FF     1          /*  not estimated  */ 
 41 ; 

Line 10 defines matrix Γ .  Its elements appear columnwise in the starting values, i.e., the 
elements of a matrix A with dimension (m,n) are initialized as follows: A(1,1), A(2,1), ..., 
A(m,1), A(1,2), ..., A(m,2), ..., A(1,n), ..., A(m,n).  Also see Section 13.2.5.  Note the names 
assigned to parameters in the starting values: Γ( , )11  and Γ( , )2 2  are always unity, so we named 
them One and fixed their values to 1; Γ( , )1 2  corresponds to −γ 1  and is thus named MinGam1; 
Γ( , )2 1  corresponds to −γ 2  and thus named MinGam2.  aML thus estimates matrix elements −γ 1  
and −γ 2 , not γ 1  and γ 2  directly.  You need to reverse the signs of the parameter estimates to get 
γ 1  and γ 2  themselves. 

Elements of the inverse of Gamma are directly used in the model statements (lines 14–17 and 
21–24), in the same way in which parameters are used.  For example, inv(Gamma(1,1)) is δ 11 , 
above; inv(Gamma(1,2)) corresponds to δ 12 , et cetera.  It is important to realize that, for 
example, inv(Gamma(1,1)) is element (1,1) of the inverse of Gamma; it is not the inverse of 
element (1,1) of Gamma.  However, aML estimates structural parameters (MinGam1 and MinGam2) 
directly. 

Note the starting values.  Prior to specifying this model, we ran simple OLS regressions of x1 
and x2 on y1 and of x2 and x3 on y2 (not shown).  The estimates are used as starting values here, 
with the coefficients of y1 and y2 cross-effects initialized at zero.  The standard deviations of u1 
and u2 are initialized at the root mean square errors of the OLS regressions. 

We estimate the model in two rounds.  In fully simultaneous equations models, the parameter 
search tends to be sensitive to good starting values, and searches may go more smoothly if 
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parameters are freed up stepwise.  Attempts to estimate too many structural parameters at once 
may fail due to poor starting values.  In this case, the model converged without difficulty. 
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5. Advanced Topics 

The preceding sections explained aML’s basic features.  Many of these features may be 
combined to specify advanced models.  This section describes just a subset of the more advanced 
models that aML supports. 

 page 
5.1. Advanced Probit and Logit Models...........................................................................155 
5.2. Ordered Probit and Logit Models With Known Thresholds......................................159 
5.3. Truncated Normal Regression Model .......................................................................163 
5.4. Heckman Selection Model ........................................................................................165 
5.5. Heteroskedasticity .....................................................................................................168 
5.6. Random Coefficients Models ....................................................................................174 
5.7. Errors in Variables ....................................................................................................176 
5.8. Seemingly Unrelated Regression (SUR) ...................................................................178 
5.9. Overlapping Splines ..................................................................................................180 
5.10. Autoregressive and Moving Average Residuals .......................................................185 
5.11. Indirect Referencing and Conditional Building Blocks.............................................192 
5.12. Interactions of Building Blocks.................................................................................196 
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5.1. Advanced Probit and Logit Models 
The standard probit and logit models are given by: 

p x u* ,= ′ +β   p
p
p

=
≤
>

RST
0 0
1 0

if  
if  

*

*

;
,
 

where p*  is a latent propensity and p an observed indicator variable whose value depends on 
whether p*  is above or below a zero threshold.  If u N~ ( , )0 1 , this is the probit model; if u 
follows the logistic distribution, it is the logit model.  This section illustrates how to specify other 
thresholds and, for the probit model only, how to specify residuals with a non-unit variance, i.e., 
u N u~ ( , )0 2σ .  Section 5.2 explains ordered probit and logit models. 

5.1.1. Probit or Logit with Nonzero Threshold 

Probit and logit models with a non-zero threshold τ  are given by: 

p x u* ,= ′ +β   p
p
p

=
≤
>

RST
0
1

if  
if  

*

*

;
.

τ
τ

 

The likelihood function is: 

L
F x p

F x p
=

− ′ =
− − ′ =
RST

τ β
τ β
b g
b g

if  
if  

0
1 1

;
,

 

where F u ub g b g= Φ  for the probit (with unit variance) and F u ub g b gc h= + −
−

1
1

exp  for the logit. 

If no threshold is specified, aML assumes a threshold at zero.  Non-zero thresholds may be 
specified (and estimated) by using a parameter.  File “Samples\Chapter5\tau.aml” re-
estimates the high school graduation model of Section 2.1 (Samples\Chapter2\educ1.aml) 
with a threshold: 

  1 option title = "As Samples\Chapter2\educ1, but with threshold"; 
  2 dsn = ..\Chapter2\education.dat; 
  3  
  4 define parameter Tau; 
  5 define regressor set BetaX; 
  6    var = female birth18 dadltHS dadcoll momltHS momcoll poorkid; 
  7  
  8 probit model; 
  9    outcome = HSgrad; 
 10    threshold = Tau; 
 11    model = regset BetaX; 
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 12  
 13 starting values; 
 14  
 15 Tau         T    0 
 16 female      T    0 
 17 birth18     T    0 
 18 dadltHS     T    0 
 19 dadcoll     T    0 
 20 momltHS     T    0 
 21 momcoll     T    0 
 22 poorkid     T    0 
 23 ; 

Line 3 defines the threshold parameter; line 10 uses it in the probit model specification.  The 
only other difference with the earlier model is that we suppressed the intercept.  As is readily seen 
from the likelihood function above, the threshold and intercept and opposites and perfectly 
collinear. 

! If both a threshold and an intercept are present in a probit or logit model, they are 
perfectly collinear and cannot both be estimated without additional restrictions or 
additional specifications that identify one or the other. 

The following table compares the results of Section 2.1’s “educ1.out” and “tau.out”: 

 educ1 tau 
Constant 2.1690 ***  
 (0.2648)  
Tau  -2.1690 ***
  (0.2648) 
female 0.0595 0.0595 
 (0.2036) (0.2036) 
birth18 -1.5982 *** -1.5982 ***
 (0.2693) (0.2693) 
dadltHS -0.9271 *** -0.9271 ***
 (0.2071) (0.2071) 
dadcoll 0.3035 0.3035 
 (0.3715) (0.3715) 
momltHS -0.4303 ** -0.4303 ** 
 (0.1951) (0.1951) 
momcoll 0.5984 0.5984 
 (0.5169) (0.5169) 
poorkid -1.0371 *** -1.0371 ***
 (0.1992) (0.1992) 
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 educ1 tau 
ln-L -147.35 -147.35 

Note that the threshold in tau is equal to the opposite of the intercept in educ1.  Otherwise, 
all coefficients and the log-likelihoods are identical. 

The syntax and approach is identical for logit models with non-zero threshold. 

5.1.2. Probit with Non-Unit Standard Deviation 

The standard probit model assumes a standard normally distributed residual, u N~ ( , )0 1 .  
aML supports both this standard probit model and its extension with non-unit variance (and non-
zero threshold): 

p x u* ,= ′ +β   p
p
p

=
≤
>

RST
0
1

if  
if  

*

*

;
,

τ
τ

 

where u N u~ ,0 2σd i .  The likelihood function is: 

L

x p

F x p

u

u

=

− ′F
HG

I
KJ =

−
− ′F
HG

I
KJ =

R
S
||

T
||

Φ
τ β

σ
τ β

σ

if  

if  

0

1 1

;

.
 

If the aML model specification does not contain a non-integrated residual, aML inserts an 
iid N ( , )0 1  residual.  Consider the following probit model specification: 

probit model; 
   outcome = varname; 
   model = regset regsetname; 

No non-integrated residual is specified, so aML inserts an iid N ( , )0 1  residual and makes this 
explicit when it repeats the model specification in the output file: 

probit model; 
   outcome = varname; 
   model = regset regsetname + 
      res(draw=_iid, ref=N(0,1)) 
      ; 

The residual is drawn independently for every replication of the outcome (every equation).  
You may explicitly specify “res(draw=_iid, ref=N(0,1))” in the control file; the 
“N(0,1)” is not a residual name, but is understood to be a standard normal residual.  It may only 
be combined with “draw=_iid”, not with any explicit draw variable or expression. 
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The default assumption is not made if the model specification explicitly contains a non-
integrated residual specification.  Specifying an integrated residual, such as when introducing 
heterogeneity, leaves the implicit iid N ( , )0 1  residual assumption intact.  Only a non-integrated 
residual automatically replaces the default term.  For example: 

define normal distribution; dim=1; name=u; 
 
probit model; 
   outcome = varname; 
   model = regset regsetname + 
      res(draw=_iid, ref=u); 

Now the residual is “u”, and its standard deviation may be estimated.  No implicit residual is 
assumed.   

Probit outcomes are 0 or 1 (false or true, off or on).  The only thing that matters about these 
outcomes is that there are two distinct values; conceptually, their actual values are without 
meaning.  As a result, it is not possible to separately identify thresholds τ  and parameters β  on 
the one hand and the standard deviation of the residual σ u  on the other.  Mathematically, this may 
be seen from the likelihood function: it may be written as a function of τ σ u  and β σ u .  The 
usual solution is, of course, to normalize σ u = 1 , but σ u  may be estimated if it is identified by 
some other part of the overall model.  For example, σ u  may be identified because it also appears 
in a continuous normal density model, as in a Tobit model (Section 2.9). 

Logit residuals are always distributed according to the standard logistic distribution.  aML 
does not permit non-standard logistic residuals.  It always inserts a logistic residual in logit 
models. 
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5.2. Ordered Probit and Logit Models With Known Thresholds 
Ordered probit/logit models are probit/logit models with multiple categorical outcomes that 

are ordered.  See Section 2.8 for an introduction.  In the most common case, the ordered 
probit/logit thresholds are the same for all observations but unknown, and need to be estimated.  
This was the example of Section 2.8.  Alternatively, there may be cases with known thresholds 
that may differ across observations.  This is the subject of this section.  We discuss ordered probit 
models only.  While all carries over to ordered logit models, the ordered probit is far more 
appealing for data with known thresholds (see page 162). 

Consider a survey question that asks for range responses.  For example, a survey may ask 
about income:  is it less than $10,000 per year, between $10,000 and $40,000, between $40,000 
and $100,000, or more than $100,000?  Or a survey may ask about the commuting distance to 
school or work: is it less than or equal to 9 miles, 10-19 miles; 20-39 miles; or 40 miles or more?  
We take the latter example as illustration. 

The (SAS, Stata, SPSS) data contain a categorical response for one of the four categories.  We 
convert these into lower and upper bound variables to represent the thresholds.  For example, an 
individual who indicated that his commute is between 11 and 20 miles, we code lower=11 and 
upper=20.  We need a way to represent infinity for individuals who report that their commute 
exceeds 40 miles: lower=40 and upper=999.  The value chosen for infinity is largely arbitrary; 
see below.  The data are converted into aML-formatted “Samples\Chapter5\commute.dat”.  
As indicated by its documentation file, “commute.sum”, it includes information on the reported 
commuting distance (lower and upper), the respondent’s age (age), marital status (married), 
whether he or she has any children (children), whether he or she is a student (student), and 
whether he or she owns a house (ownhome).  There is only one record per individual. 

Our model to relate commuting distance to demographic characteristics is: 

y x v= ′ +β , 

where y is the commuting distance, x denote covariates, and v N v~ ( , )0 2σ  captures residual 
variation.  If exact distances were observed, we would model this with a continuous model.  
Instead, we only know y’s range.  The likelihood function for an outcome that lies between lower 
bound τ L  and upper bound τ U  is: 

L x xU

v

L

v

=
− ′F

HG
I
KJ −

− ′F
HG

I
KJΦ Φ

τ β
σ

τ β
σ

. 

The following control file estimates the above ordered probit model (normal interval model) 
of commuting distance (commute.aml): 

  1 option title = "Range responses on commuting distance"; 
  2  
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  3 dsn = commute; 
  4  
  5 define regressor set BetaX; 
  6    var = 1 age age^2 married children student ownhome; 
  7  
  8 define normal distribution; dim=1; name=v; 
  9  
 10 ordered probit model; 
 11    threshold vars = lower(-Inf=-999) upper(Inf=999); 
 12    model = regset BetaX + 
 13            res(draw=_iid, ref=v); 
 14  
 15 starting values; 
 16  
 17 Constant    TT     20 
 18 age         FT     0 
 19 agesq       FT     0 
 20 married     FT     0 
 21 children    FT     0 
 22 student     FT     0 
 23 ownhome     FT     0 
 24 SigmaV      TT     10 
 25 ; 

Lines 5 and 6 define the explanatory covariates.  In addition to an intercept, we control for 
age, age-squared, marital status, children, student status, and home ownership. 

Lines 10-13 specify the ordered probit model.  The outcome specification is new: 

threshold vars = lower(-Inf=-999) upper(Inf=999); 

The defining characteristic of the model we illustrate is that the thresholds are known and included 
in the data as variables.  The outcome is therefore specified in the form of threshold variables.  
The syntax is: 

threshold vars = varname1 (-Inf=n1) varname2 (Inf=n2); 

where varname1 and varname2 are data variables (or expressions) representing the lower and 
upper bounds of the range response, respectively.  In the notation from above, varname1=τ L  and 
varname2=τ U .  Open-ended intervals involve a lower bound of τ L = −∞  or an upper bound of 
τ U = ∞ .  You may choose any two “special values” to represent plus and minus infinity and must 
tell aML which special values you selected.  As explained above, we opted for n2=999 to 
represent plus infinity.  We did not have to choose anything for minus infinity, because 
commuting distance is never negative.  Even though there is no minus infinity in the current 
application, we need to give aML a value for minus infinity.  We specified “-Inf=-999”; it is 
without relevance.  (Even though the lowest lower bound is zero, we must not specify “-Inf=0”, 
as this would imply that zero is the same as minus infinity.  In the illustration, the lowest lower 
bound truly is zero, not minus infinity.) 
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Note that there is no “outcome” or “outcomes” specification: the outcome is specified by 
the “threshold vars” statement.  This syntax tells aML that the data variables contain 
thresholds, and not integer numbers corresponding to threshold parameters that delimit a 
categorical outcome, as is the case in ordered probit models with unknown thresholds (Section 
2.8).   

The starting values are chosen in accordance with the guidelines provided in Section 6.5.  File 
“commute.out” contains the output: 

  1 ======================================================================== 
  2 =                Range responses on commuting distance                 = 
  3 ======================================================================== 
 
 et cetera... 
 
 50 ordered probit model; 
 51    threshold vars = lower (-Inf=-999) upper (Inf=999); 
 52    model = regset BetaX + 
 53       res(draw=_iid, ref=v) 
 54       ; 
 55  
 56    Summary statistics of the outcome and selected variables: 
 57  
 58       outcome1 |       Freq.    Percent 
 59    ------------+------------------------ 
 60              0 |        150       25.95 
 61             10 |        277       47.92 
 62             20 |        104       17.99 
 63             40 |         47        8.13 
 64    ------------+------------------------ 
 65          Total |        578      100.00 
 66  
 67       outcome2 |       Freq.    Percent 
 68    ------------+------------------------ 
 69              9 |        150       25.95 
 70             19 |        277       47.92 
 71             39 |        104       17.99 
 72            999 |         47        8.13 
 73    ------------+------------------------ 
 74          Total |        578      100.00 
 
 et cetera... 

Note the tabulations of “outcome1” and “outcome2”, corresponding to variables lower and 
upper.  They reflect the distribution of range responses in the data.   

Further Considerations 

In the illustration, we chose mutually exclusive categories (0-9, 10-19, 20-39, and ≥ 40), 
corresponding to the way the question was asked.  Suppose the question had been:  “How far do 
you live from school or work?  Is it less than 10 miles, 10 miles or more but less than 20 miles; 20 
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miles or more but less than 40 miles; or 40 miles or more?”  We would code the threshold 
variables correspondingly.  For example, someone who indicates living “10 miles or more but less 
than 20 miles” from his work would be coded lower=10 and upper=20.  In other words, lower 
and upper bounds of adjacent categories may be the same value, if the question is worded 
accordingly. 

Taking this issue one step further, there is no reason for the categories to be mutually 
exclusive.  For example, the survey may first ask “Is it more or less than 20 miles?,” and then ask 
for a finer categorization around 10 or 40 miles, depending on whether the distance is above or 
below 10 miles.  The respondent may, for example, indicate that he lives closer than 20 miles from 
work, but not know the answer to the follow-up question.  In that case, we simply code lower=0 
and upper=20, and use the information in the model.  Any pair of thresholds may be processed. 

Consider an extension.  Suppose the survey asks for one’s income.  Some respondents provide 
an exact answer; others refuse or indicate that they do not know the answer.  If no exact income 
figure is given, the survey launches into range questions (“unfolding brackets” in parlance of the 
Health and Retirement Study).  Both types of answers may be used in an analysis of income, 
without resorting to imputations.  The idea is to let aML switch between a continuous model (if an 
exact figure is available) and an ordered probit model (for range responses).  This example is 
worked out in Section 13.8.2. 

The above discussion of ordered models with known extensions focuses on ordered probit 
models.  In principle, ordered logit models are analogous.  However, the (implied) residual of an 
ordered logit model has a given standard deviation that cannot be estimated.  This is typically 
undesirable when thresholds are given by data.  For example, when the metric of the outcome 
changes (commuting distance in kilometers rather than miles), the parameter estimates would 
change.  Further, an ordered logit model would be very sensitive to outliers, since any threshold 
outside the (-5, 5) range, or so, leads to a likelihood that is zero or one.   

We recommend that you represent infinity by 999, 9999, 99999, 999999, 9999999, or other 
large integer values.  Values in excess of 10 million and non-integer values may cause undesired 
results because of numerical imprecision.  Your data values namely pass through ASCII 
representation before being processed by raw2aml, and if the ASCII representation is not the same 
as the value you specify in the control file, it may not be recognized as a representation of infinity.   

The example illustrated how to model normal interval data in a single level setting.  Needless 
to say, the above extends naturally into multilevel models. 
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5.3. Truncated Normal Regression Model 
Truncated normal density models apply if nothing is present in the data on cases whose 

continuous normally distributed variable is outside some range.  For example, suppose sample 
contains only individuals with strictly positive hours worked.  Unlike the Tobit model (Section 
2.9), nothing is known about individuals with zero hours.  The model is: 

h x v h
h h

h
*

* *

*,
;

,
= ′ + =

>
≤

RST
β

τ
τ

   
  if  

not observed if 
 

where h*  is some latent continuous concept related to the partially observed continuous variable 
h.  The observed distribution is therefore truncated, and the likelihood function is: 

L h x x
v v v

=
− ′F
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I
KJ −

− ′F
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I
KJ

F
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I
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1 1
σ

φ β
σ

τ β
σ

Φ , 

where φ ⋅b g  denotes the normal density function and Φ ⋅b g  the cumulative normal density function.  

The denominator is the probability that h is observed, i.e., P h* > τd i .  The likelihood thus has a 
normal density in the numerator, similar to a continuous model, and a probit probability in the 
denominator.  The model is specified using the “numerator” and “denominator” options to 
model statements: 

define parameter Tau; 
define regressor set XBeta; var = ...; 
define normal distribution; dim=1; name=u; 
 
continuous model; 
numerator;   /* may be omitted, as it is the default */ 
outcome = hours; 
model = regset XBeta + res(draw=_iid, ref=u); 
 
probit model; 
denominator; 
threshold = Tau; 
outcome = (hours==hours);  /* always evaluates to 1 */ 
model = regset XBeta + res(draw=_iid, ref=u); 

The denominator statement is new; it ensures that the likelihood of this module is in the 
denominator of the overall likelihood, i.e., that its log-likelihood is subtracted from the overall 
log-likelihood.  Several related models may be specified in a similar way.  A right-truncated 
normal density model, in which h and x are only observed if h is less than some threshold, may be 
specified using a known threshold probit model statement in which the outcome always evaluates 
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to zero, or equivalently by an ordered probit model with zero thresholds in the data.  A model in 
which the continuous outcome is both left- and right-truncated requires an ordered probit model 
with two thresholds and an outcome that lies between them.  If the threshold is not constant, but 
varies across observations, an ordered probit model with threshold variables applies. 

Using the work data of Section 2.9, we may drop individuals who do not work and estimate a 
truncated normal model of hours worked.  The model statement is (truncate.aml): 

 10 /* positive hours observations */ 
 11 continuous model;  keep if (hours>0); 
 12    outcome = hours; 
 13    model = regset BetaX + 
 14            res(draw=_iid, ref=v); 
 15  
 16 /* Probability of being in the sample */ 
 17 probit model;  keep if (hours>0); 
 18    denominator; 
 19    outcome = (hours==hours);  /* always evaluates to one */ 
 20    model = regset BetaX + 
 21            res(draw=_iid, ref=v); 

The keep statements ensure that the model only applies to individuals that worked positive 
hours (hours>0).  File “truncate.out” contains the results of estimation. 
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5.4. Heckman Selection Model 
Heckman (1979) proposed a model in which a continuous outcome is only observed on the 

basis of an auxiliary selection equation.  For example, we only observe wage rates for individuals 
that decided to work.  Individuals that decided not to work are also in the data, but their wage rate 
is missing, or zero, or otherwise irrelevant.  Formally, the model consists of a selection equation: 

z x u z
z
z

*
*

*,
;
,

= ′ + =
≤
>

RST
α   

if  
if  

0 0
1 0

 

and an equation for the outcome of substantive interest: 
y x v= ′ +β , 

where y is observed if and only if z = 1 .  If all selection operates through observed covariates, the 
second equation may be estimated using only the complete data.  However, if there is correlation 
between u and v, estimation using only the complete data yields biased coefficient estimates.  We 
assume 
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The model may be consistently estimated by the two-stage procedure proposed by Heckman 
(1979) or by full information maximum likelihood.  aML only supports the latter method. 

We illustrate the selection model using “Samples\Chapter2\work.dat” data introduced 
in Section 2.9.  The data contain labor force participation and wage information on 1,126 
individuals: 342 who did not work (hours=0) and 784 who did work (hours>0).  The 
participation decision is a function of education and the number of young children that the 
respondent has at home; the wage rate, conditional on participation, is determined by education, 
age, and tenure on the job.  There is only one record per person. 

The model may be specified as (heckman.aml): 

  1 option title = "Wages with selective labor force participation"; 
  2  
  3 dsn = work; 
  4  
  5 define regressor set AlphaX; 
  6    var = 1 (educ==1) (educ==3) children; 
  7  
  8 define regressor set BetaX; 
  9    var = 1 (educ==1) (educ==3) spline(age, 30 50) tenure; 
 10  
 11 define normal distribution; dim=2; 
 12    name=u; 
 13    name=v; 
 14  
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 15 probit model; 
 16    outcome = (hours>0); 
 17    model = regset AlphaX + 
 18            res(draw=1, ref=u); 
 19  
 20 continuous model;  keep if (hours>0); 
 21    outcome = wage; 
 22    model = regset BetaX + 
 23            res(draw=1, ref=v); 
 24  
 25 starting values; 
 26  
 27 Constant    T     1.5684158103 
 28 dropout     T    -1.1304467365 
 29 college     T     1.1375451757 
 30 children    T    -.60561246295 
 31 Constant    T      24494.40052 
 32 dropout     T    -17137.041024 
 33 college     T     27747.629488 
 34 age<30      T     350.13601824 
 35 age30-50    T     1724.8176594 
 36 age>50      T    -1318.4817886 
 37 tenure      T      1296.061371 
 38 SigmaU      F     1 
 39 SigmaV      T     22829.395063 
 40 Rho         T     0 
 41 ; 

Regressor set AlphaX contains variables that may affect the decision to work, BetaX 
variables that affect the wage rate.  Lines 11-13 define a bivariate distribution for residuals u and 
v.  Lines 15-18 specify the selection equation; its outcome is whether the person worked 
(hours>0).  Lines 20-23 the model for the selectively observed continuous outcome; its keep 
statement (hours>0) makes sure that we only include individuals who worked.  The starting 
values are converged values of two separate runs, not shown here, for the selection equation 
(work.aml) and the wage equation (wage0.aml). 

! For multiprocess models that consist of two or more equations, first estimate those 
equations separately, i.e., without correlation across the equations.  Initialize the 
parameters of the combined model to converged values of separate models, and start 
correlations at zero. 

The selection equation is a probit equation which requires that its residual has unit variance.  
We tend to omit such a residual from probit equations, because aML adds it by default.  However, 
in the current application we must explicitly specify it, because it needs to be correlated with v in 
the continuous outcome equation.  In both the selection and the continuous equations we specified 
residuals with “draw=1”.  Residuals u and v were (1) defined as part of the same distribution and 
(2) used with the same draw, and are therefore correlated across the equations. 
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File “heckman.out” contains the results of estimation.  The correlation between u and v is 
estimated at 0.4212 (not shown here) and strongly significant, indicating that respondents who 
work are a non-random subset of the population.   

Further Considerations 

We illustrated the Heckman selection model in its traditional specification as a single-level 
normal density (continuous) model with a probit selection equation.  Naturally, it may be extended 
to multilevel settings, in which there are multiple selection switches and multiple continuous 
outcomes.  The specification is analogous to the illustration above, but with residual draws that 
differ corresponding to lower-level independence of outcomes. 

The model may furthermore be extended to other, non-continuous types of outcomes that are 
based on the normal distribution.  For example, suppose the survey did not ask for respondents’ 
exact wage rates, but instead asked for range responses only:  “Is your wage below $1,000, 
between $1,000 and $2,500, between $2,500 and $5,000, or above $5,000 per month?”  These 
interval responses may be analyzed using an ordered probit model with known thresholds (Section 
5.2).  Note the close association of ordered probit (“normal interval”) models and continuous 
(“normal density”) models:  both consist of a regression and a normally distributed residual.  The 
ordered probit residual may be correlated with the residual in a probit selection equation, just like 
illustrated above for the residual in a continuous outcome model.  We are not aware of 
applications in the literature where the Heckman selection model is generalized to ordered probit 
(normal interval) outcomes.  However, it illustrates neatly how basic constructs may be combined 
in aML to lead to powerful models. 
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5.5. Heteroskedasticity 
Heteroskedasticity is present if the variance of residuals varies across observations or across 

outcomes within observations.  Consider error term ε i , where i denotes the observation number or 

(sub)branch within an observation.  Its variance, Var ε ε σi i iEb g d i= =2 2 , may not be constant, but 
related to characteristics of the observation or (sub)branch.   

Heteroskedasticity may be captured by aML in several ways, depending on the assumed 
parameterization.  We illustrate several cases using an example of wage earnings in two countries.  
In both countries, a 1997 survey asked about individual respondents’ wage earnings in earlier 
years.  Some respondents only provided earnings for 1996; others for multiple years, sometimes as 
far back as 1978.  Consider an equation explaining the log-earnings of person i at time t: 

lnY X vit it i it= ′ + +β ε . 

The unit of observation is a person; there are up to 10 wage records per person.  In deviation from 
the convention used throughout most of this manual, we explicitly write the person subscript i.  
Explanatory covariates Xit  include a country indicator, education, and age.  Residual ε i  reflects 
differences in earnings due to person-specific heterogeneity, which does not vary over time; vit  
captures transitory variation.  We would like to test for heteroskedasticity in ε i  across individuals 
in the two countries and for recall bias, i.e., for heteroskedasticity in vit  as a function of the recall 
period.  The data may be found in “Samples\Chapter5\hskedas.dat”.  The documentation 
file contains (hskedas.sum): 

  1 Documentation for 'hskedas.dat' 
  2 Created on Sun Mar 12 14:50:36 2000 with raw2aml version 1.00. 
  3 Ascii data set: 'hskedas.raw' 
  4  
  5 Number of observations:    1000 
  6 Maximum number of level 2 branches in any observation:     10 
  7  
  8 ------------------------------------------------------------ 
  9  
 10 LEVEL 1 VARIABLES: 
 11 Variable     N       Mean    Std Dev        Min        Max 
 12 _id       1000      500.5   288.8194        1.0     1000.0 
 13 country   1000      1.347   .4762539        1.0        2.0 
 14 educ      1000      2.152   .6643322        1.0        3.0 
 15  
 16 LEVEL 2 VARIABLES: 
 17 Variable     N       Mean    Std Dev        Min        Max 
 18 year      5664   1989.921    4.88628     1978.0     1996.0 
 19 age       5664   47.89936   12.45268       16.0       73.0 
 20 income    5664   20003.35   353278.5        1.0   2.06E+07 
 21  
 22 ------------------------------------------------------------ 
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 23  
 24 NOTE: there is variation in all data variables. 

Level 1 corresponds to a respondent, level 2 to years for which the respondent provided wage 
earnings.  Variable country takes value 1 for the first country and 2 for the second; educ is 1 for 
high school drop-outs, 2 for high school graduates, and 3 for college graduates.  Variable year 
indicates the year to which earnings relate; age is the age of the respondent at the end of that year; 
and income denotes wage earnings, converted into a common currency. 

Heteroskedasticity across groups 

We want to test for heteroskedasticity in ε i  across countries, and parameterize: 

Var
if the respondent is from Country 1;
if the respondent is from Country 2.

ε σ
σ
σi ib g = =
RST

1
2

2
2  

We approach this by defining separate distributions to capture heterogeneity for respondents in 
Country 1 and Country 2.  The aML control file is “hskedas1.aml”: 

  1 option title = "Heteroscedasticity in heterogeneity"; 
  2 dsn = hskedas; 
  3 option save step;  /* often a good idea with continuous models */ 
  4  
  5 define regressor set XBeta;  
  6    var = 1 (country==2) (educ==1) (educ==3) spline(age, 30 55); 
  7  
  8 define normal distribution; dim=1; name=eps1;  /* for country 1 */ 
  9 define normal distribution; dim=1; name=eps2;  /* for country 2 */ 
 10 define normal distribution; dim=1; name=v; 
 11  
 12 continuous model;  keep if (country==1); 
 13    outcome = log(income); 
 14    model = regset XBeta + 
 15       res(draw=1, ref=eps1) + 
 16       res(draw=_iid, ref=v); 
 17  
 18 continuous model;  keep if (country==2); 
 19    outcome = log(income); 
 20    model = regset XBeta + 
 21       res(draw=1, ref=eps2) + 
 22       res(draw=_iid, ref=v); 
 23  
 24 starting values; 
 25  
 26 Constant    T     2.7981373906 
 27 country2    T     .41548399208 
 28 dropout     T     -0.390239703 
 29 college     T     .65124745201 
 30 age<30      T     .07153197354 
 31 age30-55    T     .03429744567 
 32 age55+      T    -.01784057663 
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 33 sig_eps1    T     1.0666608487 
 34 sig_eps2    T     1.0666608487 
 35 sig_v       T     2.2369666396 
 36 ; 

Lines 8 and 9 define two distributions, one for each country.  Accordingly, the model 
specification is split up by country to select the appropriate ε i .  The starting values follow from a 
specification without heteroskedasticity (hskedas0, not shown here).  We may alternatively (and 
equivalently) parameterize the heteroskedasticity structure as follows: 

Std
if the respondent is from Country 1;
if the respondent is from Country 2.

ε σ
σ
λσ

ε

ε
i ib g = =

RST  

In other words, residual ε i  is scaled by load factor λ , which may be specified as a parameter and 
estimated directly (hskedas2.aml): 

  1 option title = "Heteroscedasticity in heterogeneity"; 
  2 dsn = hskedas; 
  3  
  4 define regressor set XBeta;  
  5    var = 1 (country==2) (educ==1) (educ==3) spline(age, 30 55); 
  6  
  7 define parameter Lambda;   /* Load factor on eps for Country 2 */ 
  8 define normal distribution; dim=1; name=eps; 
  9 define normal distribution; dim=1; name=v; 
 10  
 11 continuous model;  keep if (country==1); 
 12    outcome = log(income); 
 13    model = regset XBeta + 
 14       res(draw=1, ref=eps) + 
 15       res(draw=_iid, ref=v); 
 16  
 17 continuous model;  keep if (country==2); 
 18    outcome = log(income); 
 19    model = regset XBeta + 
 20       par Lambda * res(draw=1, ref=eps) + 
 21       res(draw=_iid, ref=v); 
 22  
 23 starting values; 
 24  
 25 Constant    T     2.7981373906 
 26 country2    T     .41548399208 
 27 dropout     T     -0.390239703 
 28 college     T     .65124745201 
 29 age<30      T     .07153197354 
 30 age30-55    T     .03429744567 
 31 age55+      T    -.01784057663 
 32 Lambda      T     1 
 33 sig_eps     T     1.0666608487 
 34 sig_v       T     2.2369666396 
 35 ; 
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Line 7 defines λ ; line 20 interacts it with ε .  Interactions between parameters (or regressor 
sets) and residuals offer a natural, flexible, and intuitive way of specifying heteroskedasticity.  The 
residual structure estimates are: 

 hskedas0 hskedas1 hskedas2 
    
sig_eps 1.0667 ***  0.9217 *** 
 (0.0400)  (0.0517) 
sig_eps1  0.9216 ***  
  (0.0517)  
sig_eps2  1.3034 ***  
  (0.0730)  
Lambda   1.4174 *** 
   (0.1133) 
sig_v 2.2370 *** 2.2375 *** 2.2372 *** 
 (0.0193) (0.0193) (0.0193) 
    
ln-L -12990.05 -12980.80 -12980.79 

The first column ignored heteroskedasticity; the second and third are defined above and 
equivalent to each other.  Note that, apart from minor rounding errors,  the estimated σ 2 = 1.3034  
in the second column is equal to λσ ε = 1.4174 *0.9217 = 1.3064  in the third column.  (Stricter 
convergence criteria would reduce the difference.)  The null hypothesis of homoskedasticity is 
rejected by the fact that λ  is significantly different from one, or by a likelihood ratio test.  (A 
likelihood ratio test on the first two columns computes the probability that a χ 2  with one degree of 
freedom exceeds twice the difference in log-likelihoods.  As readily found by auxiliary program 
amltest, that probability is .00001694, i.e., homoskedasticity is strongly rejected.  See Section 15.3 
for amltest.) 

Indirect Referencing 

The heteroskedasticity specification of “hskedas1.aml” may be stated more compactly 
using so-called indirect referencing.  We only briefly illustrate the concept here.  For more details 
see Sections 5.11 and 13.3.4. 

aML control files contain definitions of model building blocks and model specifications 
which refer back to the previously defined building blocks.  The building blocks are typically 
given a name (XBeta, Lambda, eps1, eps2), and the references are typically by name: 

regset XBeta 
par Lambda 
res(draw=1, ref=eps1) 

In aML terminology, this is “direct referencing.”   aML also offers “indirect referencing”  through 
one or more variables in the data.  First, you need to assign so-called reference numbers to a 
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building block definition.  Second, in the model statement, a reference variable or expression is 
specified whose value is matched to a defined building block.  For example, the model in 
“hskedas2.aml” could have been specified as follows: 

define normal distribution; dim=1; name=eps1; ref=1; 
define normal distribution; dim=1; name=eps2; ref=2; 
 
continuous model; 
   outcome = ...; 
   model = res(draw=1, refvar=country) + ...; 

We assigned reference numbers 1 to eps1 and 2 to eps2.  The residuals may now be directly 
referenced, by name, or indirectly, by reference variable (refvar).  The models for the two 
countries are combined into one statement, and variable country is used as the reference 
variable.  If country=1, aML figures out that eps1 applies; if country=2, eps2 applies.  For 
more details see Sections 5.11 and 13.3.4. 

Heteroskedasticity as a function of covariates 

In a second example of heteroskedasticity, we wish to test for heteroskedasticity in vit  as a 
function of covariates.  We suspect that the reported wage earnings are subject to recall bias, i.e., 
less precise for years long before the survey than for more recent years.  Variables survey and 
year indicate the survey year and the year to which reported earnings pertain, respectively, so we 
may compute the recall period τ  as survey-year.  We parameterize: 

v uit it= +1 ατb g . 

If α > 0 , the variance of the transitory residual increases with recall period.24  Note that 1+ ατb g  
is readily defined as a regressor set.  The following specifies this heteroskedasticity 
parameterization by interacting a regressor set and a residual (hskedas3.aml): 

  1 option title = "Heteroscedasticity due to recall error"; 
  2 dsn = hskedas; 
  3  
  4 define regressor set XBeta;  
  5    var = 1 (country==2) (educ==1) (educ==3) spline(age, 30 55); 
  6  
  7 define normal distribution; dim=1; name=eps; 
  8  

                                                           
24 Should α  be negative and 1 0+ <ατa f , the resulting residual vit  has the opposite sign from uit .  

Since the residual is normally distributed with zero mean, and thus symmetric around zero, the sign of vit  is 

inconsequential.  In other words, we effectively parameterize v uit it= +1 ατ .  If uit  were defined as part of 

a multivariate distribution and 1 0+ <ατa f , its correlation coefficient(s) would switch signs. 
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  9 /* Survey was held in 1997 */ 
 10 define regressor set Recall; var = 1 (1997-year); 
 11 define normal distribution; dim=1; name=u; 
 12  
 13 continuous model; 
 14    outcome = log(income); 
 15    model = regset XBeta + 
 16       res(draw=1, ref=eps) + 
 17       regset Recall * res(draw=_iid, ref=u); 
 18  
 19 starting values; 
 20  
 21 Constant    T     2.7981373906 
 22 country2    T     .41548399208 
 23 dropout     T     -0.390239703 
 24 college     T     .65124745201 
 25 age<30      T     .07153197354 
 26 age30-55    T     .03429744567 
 27 age55+      T    -.01784057663 
 28 sig_eps     T     1.0666608487 
 29 one         F     1 
 30 alpha       T     0 
 31 sig_u       T     2.2369666396 
 32 ; 

Heteroskedasticity in ε i  is ignored here.  Heteroskedasticity is implemented by interacting a 
regressor set and a residual.  The coefficient on the constant regressor, “1”, must be fixed at 1, 
because it is not separately identified from σ u .  The null hypothesis of homoskedasticity 
corresponds to a zero coefficient on regressor τ = 1997-year.  File “hskedas3.out” contains 
the results of estimation with evidence of significantly less precise income responses as the recall 
period lengthens:  � .α = 0 0868  and very significant (not shown here). 
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5.6. Random Coefficients Models 
So far we only illustrated heterogeneity in its most common form, namely additive in a 

regression equation.  This captures heterogeneity (stochastic variation) in the intercepts of models.  
In addition, there may be heterogeneity in slope coefficients.  This class of models is known in the 
literature as random coefficient models (Hildreth and Houck, 1968; De Leeuw and Kreft, 1986; 
Longford 1993).  In aML, random coefficients are implemented through interactions between 
variables (or regressor sets) and residuals, much like the heteroskedasticity described in Section 
5.5. 

Suppose we wish to analyze the determinants of test scores of students that are nested in 
schools (Hox 1995, pp. 11-16): 

Y Xij j j ij ij= + +β β ε0 1 , 

where Yij  is the score of student i in school j.  The unit of observation (level 1) is a school; 
students are at level 2.  There is only one test per student.  In deviation from the convention used 
throughout most of this manual, we explicitly write the school subscript j.  There is only one 
explanatory variable, Xij , socioeconomic status.  The residual is assumed to be distributed iid 

normally:  ε σ εij N~ ( , )0 2 .  The intercept, β 0 j , and the slope coefficient, β1 j , are both subscripted 
by school identifier j.  In other words, students with identical socioeconomic backgrounds may 
score differently depending on the school they attend.  For example, schools which admit students 
on the basis of proven ability may have a brighter mix of students and a higher 0 jβ  than schools 
without an entry exam; schools that pay more attention to students with higher socioeconomic 
status may show larger differences ( 1 jβ ) across students with different backgrounds than 
egalitarian schools.  Both the intercept and the slope coefficient are random functions of school 
characteristics.  We assume that the only school characteristic that matters is class size, denoted by 
Z j : 

β γ γ
β γ γ

0 00 01 0

1 10 11 1

j j j

j j j

Z u
Z u

= + +
= + +

,
,

 

where u j0  and u j1  are assumed to be normally distributed and potentially correlated.  aML 
requires that you specify the reduced form equation, while maintaining (and estimating) all 
structural building blocks.  Substituting for β 0 j  and β1 j , the test score equation becomes: 

( )
( ) ( )

00 01 0 10 11 1

00 01 10 11 0 1 .

ij j j ij j j ij

j ij j j ij j ij

Y Z u X Z u

Z X Z u X u

γ γ γ γ ε

γ γ γ γ ε

= + + + + + +

= + + + + + +
 

We separated regressor sets from residuals in all interactions.  The resulting expression is 
entirely in terms of regressor sets, variables, and residuals, and may be specified as such.   
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The data (Samples\Chapter5\re.dat) contain level 1 variable class ( Z j , class size) 
and level 2 variables ses ( Xij , socioeconomic status) and score ( Yij , the test score).  The model 
may be specified as follows (random1.aml): 

  1 option title = "Random effects in intercept and slope"; 
  2 dsn = random.dat; 
  3  
  4 define regressor set Beta0; var = 1 class; 
  5 define regressor set Beta1; var = 1 class; 
  6  
  7 define normal distribution; dim=2; name=u0; name=u1; 
  8 define normal distribution; dim=1; name=eps; 
  9  
 10 continuous model; 
 11    outcome = score; 
 12    model = regset Beta0 + 
 13       ses * regset Beta1 + 
 14       res(draw=1, ref=u0) + 
 15       ses * res(draw=1, ref=u1) + 
 16       res(draw=_iid, ref=eps); 
 17  
 18 starting values; 
 19  
 20 Const0      T     29.127499803 
 21 class0      T    -.06432157198 
 22 Const1      T     3.9282273125 
 23 class1      T    -.05700642148 
 24 sig_u0      T     .91627656034 
 25 sig_u1      T     .52421460015 
 26 rho         T      0 
 27 sig_eps     T     1.2160897807 
 28 ; 

Regressor set Beta0 represents γ γ00 01+ Z j , Beta1 corresponds to γ γ10 11+ Z j ; variable ses 
is Xij .  The first distribution is the joint normal distribution of u j0  and u j1 ; the second defines 
ε ij .  The model is specified using an interaction of a variable and a regressor sets to specify 

( )10 11ij jX Zγ γ+ , and an interaction of a variable and a residual to specify X uij j1 .   

As most multi-equation models, random effects models are very sensitive to good starting 
values.  We therefore built up the model in steps (not shown here).  We first estimated an ordinary 
least squares model of SES on test scores.  Using its estimates as starting values, we estimated the 
two-level model of interest, but without any heterogeneity (random0a.aml).  Using its estimates 
as starting values, we added heterogeneity in the intercept only, u j0  (random0b.aml).  Using its 
estimates as starting values, we added heterogeneity in the slope, u j1 , but without correlation 
between u j0  and u j1  (random0c.aml).  Finally, we freed up the correlation between u j0  and 
u j1 , as shown above (random1.aml). 
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5.7. Errors in Variables 
We tend to assume that all variables used in a regression model are measured without error.  

In practice, however, many variables are subject to measurement error.  Under some 
circumstances, such measurement error can lead to biased estimates of the parameters and/or their 
standard errors (e.g., Pindyck and Rubinfeld, 1991; Judge et al., 1985; Judge et al., 1988).   

The most innocent case is when the outcome is measured with error.  The main implication is 
that the standard deviation of the usual (implicit) residual becomes greater, so that standard errors 
of parameter estimates become greater.  The parameter estimates themselves, however, remain 
unbiased. 

A more serious case is when one or more explanatory covariate is measured with error.  
Suppose the true model is: 

0 1y x uβ β= + + , 

but x is not observed.  Instead, we observe *x x v= + , so that 

( ) ( )* *
0 1 0 1 1y x v u x u vβ β β β β= + − + = + + − . 

Even if the measurement error v is normally distributed with zero mean and no autocorrelation, 
problems arise because explanatory variable *x  is correlated with residual 1u vβ− : 

( ) ( )( )( )* 2
1 1 1, vCov x u v E x v u vβ β β σ− = + − = − . 

Ignoring this type of measurement error thus leads to biased and inconsistent parameter estimates.  
We may approach this issue along the following lines: 

define parameter Beta0; 
define parameter Beta1; 
 
define normal distribution; dim=1; name=u; 
define normal distribution; dim=1; name=v; 
 
continuous model; 
   outcome = y; 
   model = par Beta0 + xstar * par Beta1 + 
           res(draw=1, ref=u) – xstar*res(draw=1, ref=v); 

where “xstar” is a data variable contained the measured *x .  In this formulation, the problem is 
not identified.  Theory needs to provide guidance on the nature of the measurement error and on 
the empirical implementation. 

In a third case, there may be (independent) measurement error in both the outcome variable 
and one or more explanatory variables.  The implications are similar to those with measurement 
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error in an explanatory variable.  The direction of the bias, however, cannot be stated 
unambiguously.  Asymptotically, however, it can be shown that ignoring these types of 
measurement error biases parameter estimates to zero (Pindyck and Rubinfeld, 1991).  In aML, the 
issue may be addressed in a similar manner as with measurement error in an explanatory variable 
only. 
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5.8. Seemingly Unrelated Regression (SUR) 
A system of seemingly unrelated regression equations consists of two or more equations 

whose residuals are correlated but that are otherwise unrelated (e.g., Pindyck and Rubinfeld, 
1991).  In particular, none of the outcomes enters as an explanatory covariate in any other 
equation.  The equations may have regressors in common.  Formally: 

1 1 1 1

2 2 2 2

,k k k k

y x u
y x u

y x u

β
β

β

′= +
′= +

′= +
#

, 

where the covariance matrix of the residuals is not diagonal.  The specification in aML is 
straightforward.  Suppose there are three seemingly unrelated regression equations: 

define normal distribution; dim=3; 
   name=u1; 
   name=u2; 
   name=u3; 
 
continuous model; 
   outcome = y1; 
   model = ... + res(draw=1, ref=u1); 
 
continuous model; 
   outcome = y2; 
   model = ... + res(draw=1, ref=u2); 
 
continuous model; 
   outcome = y3; 
   model = ... + res(draw=1, ref=u3); 

The important feature is that the residuals were defined as part of the same distribution, and 
that their draws are the same.  Then, and only then, are they correlated.  In particular, 
“draw=_iid” will lead to undesired results, because the corresponding residual will be 
uncorrelated with everything else. 

This single-level example readily generalizes to multilevel seemingly unrelated regression 
equations.  For example: 

y x u
y x v

i i i

i i i

1 1 1

2 2 2

= + +
= + +

β ε
β η
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where subscript i indicates replication of the outcomes; cov( , )ε η ≠ 0 ; and cov( , )u vi j ≠ 0 , 
i j= , and cov( , )u vi j = 0 , i j≠ .  Suppose data variable “year” represents the replication 
number, i.  The model may be specified as: 

define regressor set BetaX1; var = ...; 
define regressor set BetaX2; var = ...; 
 
define normal distribution; dim=2; name=eps; name=eta; 
define normal distribution; dim=2; name=u;   name=v; 
 
continuous model; 
   outcome=y1; 
   model = regset BetaX1 + 
           res(draw=1, ref=eps) + 
           res(draw=year, ref=u); 
 
continuous model; 
   outcome=y2; 
   model = regset BetaX1 + 
           res(draw=1, ref=eta) + 
           res(draw=year, ref=v); 

Residuals eps and eta are correlated because they are defined as part of the same 
distribution and because their draw variable is always the same.  Residuals u and v are pairwise 
correlated because they are defined as part of the same distribution and because draw variable 
“year” ties the pairs together. 
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5.9. Overlapping Splines 
The term “overlapping splines” refers to hazard models in which dependencies on multiple 

durations may combine to form the baseline hazard.  The duration since the moment at which the 
hazard event became at risk of occurring plays a central role in almost all hazard models.  In 
addition, aML offers the capability of allowing the hazard to be a function of other durations. 

For example, in an analysis of fertility (hazard of a conception), the central duration is the 
time since the woman became at risk of becoming pregnant.  For the first conception, this is the 
time since menarche (during puberty years), and for subsequent conceptions, it is the time since 
the previous birth (or, more precisely, since the return of menses after giving birth).  However, 
there may be more time concepts that are relevant: 

• The woman’s age may matter because of biological factors.  We could capture age effects 
through several time-varying indicator variables, but a continuously changing function of age 
may appeal more.  

• Couples may postpone childbearing until after marrying.  We could capture the role of 
marriage through simple time-varying indicator variables for marital status, but that may not 
capture all dynamics.  If births are spaced differently in the early years of marriage than in 
later years, a continuous function of duration since the wedding may be more appropriate. 

• Similarly, we could capture the effect of school enrollment through a simple dummy variable.  
However, if women decide to postpone childbearing until after graduation, there may be a 
surge in fertility hazard shortly after leaving school, probably tapering off after the “saved up” 
interest in children is satisfied.  Again, a continuously changing function of duration since 
leaving school may capture more of the richness in the data than a simple indicator variable 
for school enrollment. 

• Given long term variations in fertility rates, calendar time may play a role.  We could capture 
the effect of calendar time through time-varying covariates, but a continuously changing time 
trend may appeal more than a stepwise-changing trend.  Unlike dependencies on other 
durations, there is no natural moment at which the time clock starts ticking.  You may select 
any origin; see below. 

In suggesting alternative ways to capture the effects of various time concepts, we used time-
varying covariates rather than covariates that are constant for the duration of the birth interval.  
For example, some models in the literature include woman’s age at the beginning of the birth 
interval as a covariate.  If the birth interval starts at age 25, and the woman has no more children, 
such birth intervals may last several decades, and the initial age is not a very good measure of 
biological effects any more.  Time-varying covariates are thus far preferable.  However, by 
definition, time-varying covariates change discretely from one sub-interval to the next, and their 
effect on a hazard thus consists of discrete jumps.  We tend to opt for continuously changing 
(piecewise-linear) duration patterns instead.  They have the additional advantage that there is no 
need to break up the spell into subintervals between which time-varying covariates change. 
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Hazard duration dependencies in aML are always piecewise-linear in the log-hazard.  The 
user selects the nodes (bend points, knots), and aML estimates the slopes between nodes.  aML 
cannot estimate the optimal number or location of nodes; see Section 6.6 for suggestions on 
selecting nodes. 

To see how duration dependencies combine to form the total baseline duration dependency, 
consider the following model specification of the hazard of conceiving a child: 

define spline SpellDur;  nodes = 2 5;    intercept; 
define spline Age;       nodes = 18 30; 
define spline MarDur;    nodes = 1 5 10; 
define spline OutSchool; nodes = 2;      intercept; effect=right; 
define spline CalTime;   nodes = ; 
 
hazard model; keep if (married==1 and parity==2); 
   censor=...;  duration=...; 
   model = durspline(origin=0, ref=SpellDur) + 
           durspline(origin=age, ref=Age) + 
           durspline(origin=mardur, ref=MarDur) + 
           durspline(origin=school, ref=OutSchool) + 
           durspline(origin=time, ref=CalTime) + 
           ...; 

This model only applies to the second birth interval of married women.  The hazard of 
conceiving a child is assumed to depend on: 

• SpellDur:  the duration of the spell itself, i.e., the duration since the birth of the previous 
child.  It is the main duration and its pattern has nodes at 2 and 5 years.  We tend to assign an 
intercept to the dependency on the main duration, but it may equivalently be done as part of a 
regressor set.  The “origin=0” in the model specification makes the spell duration clock 
starts ticking at the beginning of the spell. 

• Age:  the age of the respondent, with nodes at 18 and 30 years of age.  The age clock starts 
ticking at “origin=age”, where age is a data variable representing the age at the beginning 
of the spell.  It is at the same level as the censor and duration variables, and not time-varying.  
If a woman is, say, 26 at the beginning of the spell, the age clock has accumulated 26 years of 
age effect.  The node at 18 years has thus long passed, and the node at 30 years comes four 
years into the spell. 

• MarDur:  the duration since the wedding, with nodes at 1, 5, and 10 years after the wedding.  
The marriage duration clock starts ticking at “origin=mardur”, where mardur is a data 
variable representing how many years the woman has been married at the beginning of the 
spell.  It is at the same level as the censor and duration variables, and not time-varying.  If the 
woman married, say, two years before the beginning of the spell, the node at one year has 
already passed, and the effective marriage duration nodes will be three and eight years into 
the spell. 
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• OutSchool:  the duration since leaving school, with a node at 2 years.  Some women may 
leave school sometime during the spell.  We wouldn’t want the effect of leaving school to 
affect the period before leaving school, so we specify “effect=right”.  The “intercept” 
option makes the hazard of a conception jump up when the woman leaves school.  The clock 
starts ticking at “origin=school”, where school is a data variable representing how many 
years the woman has been out of school at the beginning of the spell.  It is at the same level as 
the censor and duration variables, and not time-varying.  If the woman graduated, say, four 
years before the beginning of the spell, the node at two years has already passed, and the 
effect of duration since leaving school is linear throughout the conception spell. 

• CalTime:  a dependency on calendar time, measured relative to an arbitrary point in time.  
The time clock starts ticking at “origin=time”, where time is a data variable representing 
the number years since the arbitrarily chosen origin at the beginning of the spell.  It is at the 
same level as the censor and duration variables, and not time-varying.   
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Consider a woman who was born in 1970.  She left school in 1992, married in 1994, and 
delivered her first baby at age 26 in 1996.  Her second conception spell thus starts in 1996.  We 
measure calendar time relative to the year 2000.  At the beginning of the spell, her data variables 
are:  age=26;  mardur=2;  school=4;  time=-4.  The figure above visualizes the five duration 
dependencies that combine to form her total baseline duration dependency.25 

The dashed vertical line indicates 1996, when her conception spell starts.  The main duration 
dependency, on spell duration, is pictured toward the bottom.  The log-hazard of a conception 
increases at 0.27 per year for the first two years, decreases at –0.07 per year until the fifth year, 
and decreases at –0.03 per year thereafter.  Note the nodes (bend points) in the figure at two and 
five years after the beginning of the spell, in 1998 and 2001.  The dependency on age with nodes 
at 18 and 30 years translate into 1988 and 2000, as is clearly visible.  (The portion of the age 
dependency before the beginning of the spell in 1996 is irrelevant to the conception interval.  The 
figure only shows it to illustrate how the relevant portion of the age pattern is constructed, 
including the intercept shift that the age pattern contributes to the overall baseline hazard at the 
beginning of the hazard spell.  The pre-spell portions of the effects of marriage duration, duration 
since leaving school, and calendar time are shown for the same reasons.)  The calendar time trend 
is downward, reflecting decreasing fertility over the estimation sample period.  The spell starts just 
two years after the wedding, so that marriage duration contributes substantially to the hazard of a 
conception.  The marriage duration node at one year fell before the spell; the nodes at five and ten 
years translate into three and eight years into the spell, i.e., 1999 and 2004, respectively.  (The 
node at 1999 is barely visible, because the slopes before and after five years into a marriage are 
almost identical.)  The dependency on duration since school was without effect until 1992, when 
she left school.  At that time, the log-hazard jumped up by 0.69.  It then decreased for two years at 
–0.07 per year, and subsequently at –0.03 per year. 

The thick line shows the aggregate duration dependency.  It is simply the vertical aggregation 
of the five component dependencies.  It may be clear now why aML requires duration 
dependencies to be piecewise-linear: the sum of any number of piecewise-linear duration 
dependencies is again piecewise-linear. 

                                                           
25 The patterns were estimated on a sample of 5,825 women in the 1979-1991 National Longitudinal 

Study of Youth, and extrapolated in time for the simulation in the figure.  With the exception of the age slope 
between 18 and 30 years and the spell duration slope after five years, all slopes were strongly significant with 
t-statistics that exceeded 2.5 in absolute value.  The model was based on all birth intervals, both inside and 
outside of marriage.  It controlled for many other covariates.  It is a simplified version of the model described 
in Lillard, Panis, and Upchurch (1996). 
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All duration patterns are individually identified, because there is great variation in the timing 
of women’s birth spells.  In other words, women start conception spells at many different ages, 
which separately identifies the age pattern from the spell duration pattern.  The spells also start at 
many different wedding durations, which identifies the marriage duration pattern.  Et cetera.  The 
location of nodes and the magnitude of slopes of the aggregate duration dependency are functions 
of the nodes and slopes of component dependencies, and the spline origins, i.e., moments at which 
their corresponding clocks started ticking. 
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5.10. Autoregressive and Moving Average Residuals 
In addition to residuals from normal and finite mixture distributions, aML supports stationary 

autoregressive and moving average residuals.  Autoregressive and moving average residuals vt  
are defined by (e.g., Pindyck and Rubinfeld, 1991): 
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where subscript t denotes a time period and et  is the innovation term, e Nt e~ ( , )0 2σ .  We 
suppressed the observation-level subscript.  The time period must be integer-valued, except for 
AR(1) residuals:   

v v et
t s

s t= +−φ1 , 

where s and t denote time periods.  If t s−  is non-integer, φ1  must be positive; see below. 

Consider an AR(1) process with realizations that are one period apart.  Its variance is 
σ σ φv e

2 2
1
21= −d i , often denoted by γ 0 , and the autocovariance for a k-lag is γ φ γk

k= 1 0 .  For 
example, the autocovariance matrix of an AR(1) process with eight realizations (outcomes) is: 
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aML does not require (or assume) that the realizations are spaced one period apart; see below. 

In its simplest form, an ARMA residual is defined as follows: 
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define arma(p,q) distribution;  dim=1; 
   timevar = varname; 
   name = resname; 

These statements define a univariate ARMA(p,q) distribution.  The autoregressive and moving 
average order are limited to p ≤ 9  and q ≤ 9 .  aML only supports univariate ARMA distributions.  
The “dim=1” statement is optional.  You may define purely autoregressive distributions as 
“ar(p)” or “arma(p,0)”, and purely moving average distributions as “ma(q)” or arma(0,q)”. 

ARMA residuals may only be used in continuous models.  aML does not assume that all 
continuous outcomes are one time period apart; it requires that you specify a variable which 
contains the time that corresponds to an outcome.  The time variable, specified in the mandatory 
“timevar” statement, must be at the same level as the outcome variable of the continuous model 
specification.  Its absolute value is irrelevant; only the time difference between outcomes is 
relevant.  For example, if your data contain annual outcomes between 1991 and 1996, you may 
create a time variable that is equal to 1991, 1992, ..., 1996.  Equivalently, the time variable may be 
1, 2, ..., 6, or any other set of equally spaced integer variables. 

The distribution’s residual must be named (name=resname), just like residuals of normal and 
finite mixture distributions. 

As mentioned before, the time variable must be integer-valued, except for AR(1) 
distributions.  The autocorrelation for an AR(1) residual with realizations at times s and t is equal 
to γ φ γt s

t s
−

−= 1 0 .  If t s−  is non-integer, this requires that φ1  is strictly positive, as indicated 

above.  Stationarity further requires that φ1  is less than one.  aML therefore only accepts non-
integer time variables for AR(1) distributions of which the autoregressive coefficient has been 
restricted to the (0,1) domain: 

define ar(1) distribution;  dim=1; 
   timevar = varname; 
   ardomain=(0,1); 
   name = resname; 

You may always restrict autoregressive coefficients, even if the time variables are integer-
valued.  Similarly, you may restrict moving average coefficients.  The following restrictions are 
supported: 

ardomain = (-1,1); 
ardomain =  (0,1); 
madomain = (-1,1); 
madomain =  (0,1); 
madomain =  (0,Inf); 
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The restrictions apply to all autoregressive or moving average coefficients.  In other words, you 
cannot restrict the first autoregressive coefficient of an AR(2) process to (0,1) and leave the other 
unrestricted. 

Consider an example.  Data file “Samples\Chapter5\arma.dat” contains variables that 
were generated with ARMA processes.  Data structure 10 consists of two levels.  The first level is, 
of course, the observation; the second level corresponds to points in time, as subscripted by t 
above.  We estimate the following model with ARMA(2,2) residual: 

y x vt t t= ′ +β ,  where  v v v e e et t t t t t= + + + +− − − −φ φ θ θ1 1 2 2 1 1 2 2  

The outcome variable in the data is “y”, a level 2 variable.  The time variable is “time”; it is at the 
same level as the outcome, as it should be.  Explanatory covariates are “var1” (at level 1), 
“var2” (at level 2), and “var3” (at level 3).  The model may be specified as (arma1.aml): 

  1 dsn = arma.dat; 
  2  
  3 define regset BetaX; var = 1 var1 var2 var3; 
  4  
  5 define arma(2,2) distribution; 
  6    timevar = time; 
  7    name = v; 
  8  
  9 continuous model; data structure = 10; 
 10    outcome = y; 
 11    model = regset BetaX + 
 12            res(draw=_iid, ref=v); 
 13  
 14 STARTING VALUES; 
 15  
 16 Constant    TTTTT    2.548 
 17 var1        TTTTT    0 
 18 var2        TTTTT    0 
 19 var3        TTTTT    0 
 20 rho1        FTTTT    0 
 21 rho2        FFFTT    0 
 22 SigmaV      TTTTT    1.83 
 23 theta1      FFTTT    0 
 24 theta2      FFFFT    0 
 25 ; 

Lines 5-7 define the ARMA(2,2) distribution and its residual, “v”.  It is used in the model 
specification on line 12.  Its draw is specified as “draw=_iid”. 

! ARMA residuals must always be drawn independently at the outcome level with 
“draw=_iid”. 
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Lines 16-24 initialize the parameters.  An ARMA(p,q) distribution generates p+q+1 
parameters which must be initialized in the following order:  p autoregressive coefficients, one 
standard deviation of the innovation term, and q moving average coefficients.   

The search for optimal ARMA parameters can be very sensitive to good starting values.  We 
strongly recommend that you build up the model in small steps.  The control file above first 
estimates the coefficients of the regressor set and the standard deviation of the innovation.  The 
autoregressive and moving average coefficients are fixed at zero, i.e., this is a model with 
covariates and a normal (non-ARMA) residual only.  The starting values of the constant and the 
standard deviation are the mean and standard deviation of the outcome, respectively.  Upon 
convergence, we introduce first-order autoregression in the model by freeing up φ1  (phi1).  In the 
next step, we estimate an ARMA(1,1), then ARMA(2,1), and finally ARMA(2,2).  The results are 
in “arma1.out” (not shown). 

Non-Chronological Data 

In our data, there were up to 12 outcomes per observation.  They appeared in the data in 
chronological order.  This will typically be the case, and aML checks by default that the time 
variables are indeed ordered.  If they are not, it issues an error message.  However, you may turn 
that check off: 

timevar = varname;  increasing=no; 

The default is “increasing=yes”.  Experience shows that proper creation of time variables can 
be tricky, and we recommend that you keep outcomes in chronological order and allow aML to 
perform this data integrity check. 

ARMA Residuals in a Multilevel Model 

The example above illustrated ARMA residuals in a two-level model.  What if there are 
additional levels, and you have reason to believe that the autocorrelation is restricted to sub-units?  
Suppose we have a data set with wages of couples.  The couple is level 1, the husband and wife 
are level 2 branches, and individual wage records are level 3 subbranches.  We expect annual 
wages of a person to be autocorrelated, but don’t expect that the wage of the husband in a year is 
correlated with the wage of the wife in the preceding year (other than perhaps through couple-
level unobserved heterogeneity).  Consider a couple for which we have three wage records of the 
husband and five records for the wife.  We want the covariance matrix of the eight wages to be 
block diagonal: 
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In other words, we want autocorrelation within persons (level 2 branches), but not across 
persons.  This is achieved in the definition of the ARMA residual: 

define arma(p,q) distribution;  dim=1; 
   timevar (within level 2) = varname; 
   name = resname; 

By default, aML assumes that all ARMA residuals are correlated, which may equivalently be 
stated by “timevar (within level 1) = varname”.  You may specify any level within 
which ARMA residuals are correlated, provided that it is at least one level above the outcome 
level.  It would not make sense to specify that the residuals are correlated within level 3 if the 
outcome is at level 3, because the residuals would then always be independent. 

As before, only absolute values of differences in time variables are relevant.  With three wage 
outcomes for the husband and five for the wife, the differences between the time variables of the 
first three and the latter five outcomes are relevant; the difference between the third (husband’s 
last) and fourth (wife’s first) time variables is again irrelevant. 

You may specify multiple ARMA processes that are autocorrelated within different levels.  
For example, if the couple wage data would include an additional layer for jobs at level 3, you 
could specify one ARMA residual that is correlated with all wage observations of a spouse 
(within level 2) and a second ARMA residual that is correlated within jobs only (within 
level 3). 

Data structure 20 in “Samples\Chapter5\arma.dat” contains variables that are 
autocorrelated only within level 2.  It consists of three levels.  The first level is the observation; 
the second level corresponds to individuals (or other mid-level units); and the third level 
corresponds to points in time.  We estimate the following model with AR(1) residual: 

y x vit it it= ′ +β ,  where  v v eit it it= +−φ1 1 , 

and cov ,v vit jsd i = 0  for all i j≠ . 

The outcome variable in the data is “y”, a level 3 variable.  The time variable is “time”; it is 
at the same level as the outcome, as it should be.  Unlike in the preceding example, it is not 
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necessarily integer-valued.  Explanatory covariates are “var1” (at level 1), “var2” (at level 2), 
and “var4” (at level 3).  There are up to three level 2 branches per observation, and up to twelve 
level 3 subbranches in any one level 2 branch.  The model may be specified as (arma2.aml): 

  1 dsn = arma.dat; 
  2  
  3 define regset BetaX; var = 1 var1 var2 var4; 
  4  
  5 define ar(1) distribution; 
  6    timevar (within level 2) = time; 
  7    ardomain=(0,1); 
  8    name = v; 
  9  
 10 continuous model; data structure = 20; 
 11    outcome = y; 
 12    model = regset BetaX + 
 13            res(draw=_iid, ref=v); 
 14  
 15 starting values; 
 16  
 17 Constant    TT    -1.60674 
 18 var1        TT    0 
 19 var2        TT    0 
 20 var4        TT    0 
 21 phi1        FT    0.3 
 22 SigmaV      TT    1.423 
 23 ; 

Line 6 specifies that the residual is correlated with other residuals within level 2, but not 
across level 2 branches.  Line 7 restricts the autoregressive coefficient to be between zero and one, 
as is required with data that are not integer-spaced.  The remaining is similar to the example 
above.  The results are in “arma2.out” (not shown). 

Cumulative Autoregressive Residuals 

aML supports a variation of first order autoregressive residuals, the cumulative first order 
autoregressive residual, or CAR(1).  Unlike regular AR(1) residuals, the CAR(1) does not assume 
that the residual series has infinite history.  It assumes that the series started at period 1 with just 
an innovation term: 

v e
v v e it t t

1 1

1 1 1
=
= + >−φ    for  .

 

As a result, the variance of a CAR(1) is not constant but increases over time from σ e
2  at time t=1 

to σ φe
2

1
21−d i .  The definition of a CAR(1) residual is 

define car(1) distribution; 
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with otherwise identical further specifications and options.  Its use in model statements is identical 
to the use of AR(1) residuals. 

In addition to the increasing variance, there is one further important distinction between 
CAR(1) and AR(1) residuals.  The absolute value of an AR(1) time variable is irrelevant, because 
the variance and autocovariances only depend on the differences between time variables.  By 
contrast, the absolute value of the CAR(1) time variable does matter.  The series is assumed to 
start at time t=1. 
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5.11. Indirect Referencing and Conditional Building Blocks 
aML models are specified in terms of previously defined building blocks such as regressor 

sets, residuals, splines, parameters, et cetera.  For example: 

define regset BetaX; var = ...; 
define normal distribution; dim=1; name=eps; 
model = regset BetaX + res(draw=_iid, ref=eps); 

We first defined a regressor set and gave it a name, BetaX.  Similarly, we defined a distribution 
and named its residual, eps.  These building blocks were referenced by name in the model 
statement.  In aML terminology, they were “directly referenced.”  aML supports an alternative 
way to refer to building blocks, “indirect referencing.” 

Indirect referencing requires that building blocks are assigned one or more numbers, so-called 
reference numbers.  Think of these reference numbers as an alternative to names.  Indeed, building 
blocks do not need to have a name; a reference number is sufficient.  For example: 

define regset; ref=3; var = ...; 
define normal distribution; dim=1; name=eps; ref=44; 

The regressor set no longer has a name.  It cannot be referenced directly anymore.  However, it 
has a number, 3, and may be identified by that number.  The residual has both a name and a 
number; it may be directly or indirectly referenced.  Indirect referencing is done with a reference 
variable or expression: 

model = regset(refvar=educ) +  
        res(draw=1, refvar=category); 

where educ and category are data variables.  If educ equals 3, the regressor set is included in 
the equation; if category=44, the residual enters. 

Indirect referencing allows the selection of building blocks on the basis of data variables, i.e., 
it allows different model specifications for different observations.  Suppose we want to estimate 
separate equations for three education categories, identified by educ=1, 2, and 3: 

define regset Dropouts;  ref=1; var=...; 
define regset Graduates; ref=2; var=...; 
define regset College;   ref=3; var=...; 
 
model = regset(refvar=educ) + ...; 

Depending on the value of educ, one of three different regressor sets is included in the equation.  
We did not have to assign names to the regressor sets, but did so anyway to make it easier to 
understand the control file. 

You may use expressions to indirectly reference building blocks: 
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regset(refvar=100*sex+educ) 
regset(refvar=12*(educ==2)+max(age,18)) 

Et cetera.  All usual expression operators are allowed (Section 13.17).   

While you may only assign one name to any one building block, you may assign as many 
reference numbers as you like.  This offers a powerful way to quickly explore interactions.  For 
example, to combine high school drop-outs (educ=1) and high school graduates (educ=2) but 
distinguish them from college graduates (educ=3), you may specify: 

define regset NoCollege; ref=1 2; var=...; 
define regset College;   ref=3;   var=...; 
 
model = regset(refvar=educ) + ...; 

What if the reference variable or expression evaluates to a number which was not found 
among any definition?  If the reference variable is nonzero, this will result in an error message.  
Zero, however, is a value with special meaning.  If the reference variable evaluates to zero, aML 
omits the building block from the equation.  For example, suppose a model includes some 
person’s characteristics, plus the characteristics of his/her spouse, if the person is married: 

define regset Everyone;             var=...; 
define regset MarriedOnly;  ref=1;  var=...; 
 
model = regset Everyone + 
        regset(refvar=married) + ...; 

If married=1, both the first and the second regressor set enter the model; if married=0, the 
second term drops out. 

Reference numbers must be strictly positive integers.  They may not be zero, because zero has 
the special interpretation that the building block should not be in the equation. 

Reference variables (and variables involved in a reference expression) may be at any level 
that is equal to or higher than the outcome variable’s level.  It would not make sense to determine 
the model specification of a level 3 variable based on a level 4 variable.  However, it is fine to 
make the selection based on a level 1, 2, or 3 variable. 

Just like you may not assign the same name to two or more regressor sets (or other building 
blocks), you may not assign duplicate reference numbers.  More precisely, reference numbers 
must be unique within building block types, but may be re-used for building blocks of another 
type.  It is, for example, permissible to assign a regressor set and a spline the same reference 
number.  There are four types of building blocks:  regressor sets, splines, distributions (residuals), 
and parameters/vectors.  (aML treats parameters and vectors as the same type, so all parameter and 
vector reference numbers must be unique.) 

In summary, the following rules apply to indirect referencing: 
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• Reference numbers are strictly positive integer-valued numbers by which building blocks may 
be identified.  They must be unique within building block types, but the same number may be 
used in different building block types. 

• Model statements may specify building blocks directly, by name, or indirectly, through 
reference variables or expressions.  For every outcome (every equation), aML evaluates the 
reference variable and attempts to match its value to defined building blocks of the 
appropriate type. 

• If the reference variable evaluates to zero, the building block does not enter the equation.  If 
the building block was interacted with other building blocks, the entire interaction term is 
excluded.  If the reference variable evaluates to a nonzero number which was not assigned to 
any building block, aML aborts with an error message. 

• Reference variables may be at any level that is at or above the level of the outcome variable. 

In most cases, indirect referencing is merely a convenient and concise alternative to multiple 
model statements that apply to a subset of cases and that reference building blocks by name.  For 
example, the following model specification 

define regset Dropouts;  ref=1; var=...; 
define regset Graduates; ref=2; var=...; 
define regset College;   ref=3; var=...; 
 
probit model; 
   outcome=varname; 
   model = regset(refvar=educ) + ...; 

may equivalently be written as: 

probit model; keep if educ==1; 
   outcome=varname; 
   model = regset Dropouts + ...; 
 
probit model; keep if educ==2; 
   outcome=varname; 
   model = regset Graduates + ...; 
 
probit model; keep if educ==3; 
   outcome=varname; 
   model = regset College + ...; 

In other cases, indirect referencing enables models to be specified which would otherwise be 
very tedious.  For example, we model the stability of a marriage as a function of the number and 
age composition of the couple’s children.  We want to allow for the possibility that the effect of a 
child on the hazard of divorce varies with the child’s age.  The data contain couples with zero to, 
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say, 16 children.  An efficient way to capture the effects of children on the hazard of marital 
disruption is: 

define spline ChildEffect; ref=1;  
   intercept; effect=right; nodes=...; 
hazard model; 
   censor=...;  duration=...; 
   model = ... + 
           durspline(origin=kiddur1, refvar=kid1) + 
           durspline(origin=kiddur2, refvar=kid2) + 
           ... + 
           durspline(origin=kiddur16, refvar=kid16); 

where kiddur1 through kiddur16 are variables measuring the time from the wedding to the 
birth of a child (if any).  For children born before the wedding, this variable is positive; for 
children born during the marriage, it is negative.  Most couples have fewer than 16 children; their 
corresponding kiddur variables are irrelevant and missing in the (SAS, Stata, SPSS) data.  For 
conversion into aML-formatted data, we recommend that you set them equal to 99999, for a 
reason that will become clear shortly.  Variables kid1 through kid16 equal one if the 
corresponding child is ever born and zero otherwise.  Consider a couple with two children.  Its 
kid1=kid2=1, and kid3 through kid16 are all zero.  The ChildEffect spline thus enters 
twice into their divorce hazard equation.  They make the hazard jump (up or down, depending on 
the sign of the intercept that is part of the spline).  Their effect is only felt after the child’s birth, 
not throughout the spell (effect=right).  The other 14 potential entries are omitted, because 
their reference variables kid3-kid16 evaluate to zero. 

One could specify this model by interacting each duration spline by a regressor set with one 
variable that evaluates to one if the child is relevant and zero if it is not.  You would need sixteen 
of those regressor sets, each consisting of one variable with a coefficient fixed to one.  There 
would thus be sixteen redundant parameters in the model.  Computationally, it would be grossly 
inefficient, because all sixteen interactions need to be evaluated and accumulated for every couple, 
including those with no or few children.  In short, indirect referencing with reference variables that 
may become zero offers a superior alternative. 

One issue remains: what to do with origin variables kiddur1 through kiddur16 that are 
irrelevant because there was no corresponding child?  They may be set equal to any value.  
Experience shows that the data preparation for problems like the one described here can be tricky.  
By default, aML therefore verifies that you really intended a duration spline to drop out of the 
equation by checking that its matching origin variable is equal to 99999.  You may turn off that 
check by specifying “option check99999=no (page 281).  There is no such check for other 
types of building blocks. 
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5.12. Interactions of Building Blocks 
Section 5.5 and 5.6 showed examples where parameters and variables were interacted with 

regressor sets and residuals in order to capture heteroskedasticity or random coefficients.  More 
generally, parameters and regressor sets may be interacted with other parameters and regressor 
sets, as well as with duration splines and (integrated) residuals.  The rules for regressor sets apply 
equally to simple variables and regressor splines. 

This allows for nonlinearities of the following types: 

1 2λ λ  two parameters; 

( )Xλ β ′  parameter and regressor set; 

( ) ( )1 1 2 2X Xβ β′ ′  two regressor sets; 

xλ  parameter and variable; 

( )x Xβ ′  variable and regressor set; 

( )Tλ γ ′  parameter and duration spline; 

( ) ( )X Tβ γ′ ′  regressor set and duration spline; 

λε  parameter and (integrated) residual; 
xε  variable and (integrated) residual; 

( )Xβ ε′  regressor set and (integrated) residual. 

Regressor splines, which are internally treated as a special case of regressor sets, may be 
interacted in the same way as regressor sets.  There is no limit to the number of factors in 
interactions, so that, for example, ( ) ( ) ( )1 1 1 2 2 2 3 3 4X X X Xλ β β λ β ε′ ′ ′  may be specified, should that 
make sense. 

The ability to interact regressor sets extends the class of models that aML supports beyond 
just linear models.  Furthermore, regressor set interactions are allowed in any type of model, not 
just continuous outcome models. 

While multiple parameters and regressor sets/splines may appear in interactions, only one 
duration spline or one residual may be specified.  It is not clear what the interaction of two 
duration splines or two residuals would mean, and aML does not allow them.  Furthermore, 
interactions between duration splines and (integrated) residuals are not allowed. 

Interactions are specified in the model statement.  For example: 

model = par Lambda1 * par Lambda2 + ...; 
model = par Lambda * regset Xbeta + ...; 
model = regset XBeta1 * regset Xbeta2 + ...; 
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model = par Lambda * varname + ...; 
model = varname * regset BetaX + ...; 
model = par Lambda * durspline(origin=..., ref=...) + ...; 
model = regset XBeta * durspline(origin=..., ref=...) + ...; 
model = par lambda * res(draw=..., ref=eps) + ...; 
model = par lambda * intres(draw=..., ref=eps) + ...; 
model = varname * res(draw=..., ref=eps) + ...; 
model = regset XBeta * res(draw=..., ref=eps) + ...; 
model = regset XBeta * intres(draw=..., ref=eps) + ...; 

! Parameters, regressor sets, and regressor splines may be interacted in any order.  
However, if an interaction involves a duration spline, then all other building blocks 
must be listed first.  Similarly, if the interaction involves a residual or integrated 
residual, then this residual must be listed as the last factor. 

For example, the following specifications are illegal: 

model = durspline(origin=..., ref=...) * par Lambda + ...; 
model = intres(draw=..., ref=eps) * regset XBeta + ...; 

Indirectly Referenced Interaction Terms 

Building blocks that are interacted with other building blocks may be directly or indirectly 
referenced, just like standalone building blocks.  If a standalone building block is indirectly 
referenced, and its reference variable evaluates to zero, it drops out of the equation (Section 5.11).  
If the reference variable of an interacted building block evaluates to zero, the entire interaction 
drops out of the equation. 

Interacting Parameters, Regressor Sets, and/or Regressor Splines 

There are very many models which require interactions of parameters, regressor sets, and/or 
regressor splines.  Random coefficient models typically require the interaction of two regressor 
sets (Section 5.6).  For example, suppose that an individual’s rate of wage growth depends on his 
intelligence level.  In a model explaining individuals’ log-wages, we may interact a measure of 
intelligence with some age pattern.  Suppose we capture the age pattern by a spline with nodes at 
30 and 55 years of age.  A simple model (without random coefficients) may be: 

lnW IQ IQ A= + + + ′ +β β β β γ ε0 1 2 3b g , 

where lnW  denotes the log-wage of the individual whose subscript we suppressed; IQ  is 
Intelligence Quotient; A  is a spline transformation of age, and ε σ ε~ ( , )N 0 2 .  The model may be 
specified as: 

define regressor set XBeta0;     var = 1 IQ; 
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define regressor set Interact;   var = 1 IQ; 
define regressor set AgeProfile; var = spline(age, 30 55); 
 
define normal distribution; dim=1; name=eps; 
 
continuous model; 
   outcome = log(wage); 
   model = regset XBeta0 + 
      regset Interact * regset AgeProfile + 
      res(draw=1, ref=eps); 

The results are perhaps best interpreted with a picture.  The figure below shows the simulated 
wage paths for individuals with mean IQs and for those one and two standard deviations below 
and above the mean.  Note that the profile tilts around a certain age, depending on the values of 
the estimated parameters.  (We included IQ in the equation both directly and through the age 
interaction.  If the direct term were omitted, the pattern would be forced to tilt around zero, which 
is generally undesirable.)  In the simulation, that age is in the displayed range, but it could be 
anywhere.  A potential interpretation for the observed pattern is that highly intelligent individuals 
tend to stay in school longer and/or need more time to find a good job match.  Their intercepts are 
lower, but their wages grow faster than of less intelligent persons. 
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Simulated Wage Profile, Interacted With IQ 

Interacting a Duration Spline 

The interaction of a parameter or regressor set with a duration spline, in hazard models, gives 
similar results:  the duration dependence is tilted.  Duration spline interactions commonly appear 
in multiprocess models.  For example, suppose that the desire of couples to conceive a child is in 
part dependent on the stability of their marriage (Lillard, 1993).  The model of fertility timing 
should thus be estimated jointly with a model of divorce risk: 

divorce:  
conception:  

ln ;
ln ln

,

h t T t X
h t h t T t X

T t T t X X

d

i
c d

b g b g
b g b g b g

b g b g

= ′ + ′ +
= + ′ + ′ +
= ′ + ′ + ′ + ′ + +
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where lnh td b g  is the log-hazard that a couple whose subscript we suppressed gets divorced at time 

t, and lnh ti
c b g  is the log-hazard that this couple conceives its i-th child.  The term λγ ′1 1T tb g  

interacts a parameter and a duration spline.  It contributes a tilted divorce hazard duration pattern 
to the fertility baseline hazard.   
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Duration splines may also be interacted with regressor sets, so that the degree of tilting varies 
across observations.  Hazard models allow regressor sets with time-varying variables that are one 
level below the outcome level, provided that those regressor sets enter additively in the log-hazard 
equation.  If they are interacted with a duration spline (or integrated residual), they may only 
contain variable at or above the outcome level. 

The effect of a covariate in a regressor set that is interacted with a duration spline does not 
shift the baseline duration pattern proportionally, but tilts it.  The ability to interact regressor sets 
with duration spline thus extends the class of hazard models that aML supports beyond 
proportional hazard models. 

Interacting a Residual or Integrated Residual 

Residuals and integrated residuals may be interacted with parameters, regressor sets, and 
regressor splines.  As illustrated above, this allows for the specification of random coefficients 
models and (other) forms of heteroskedasticity.  It also commonly appears in multiprocess models, 
such as in the joint divorce-fertility model above, λε . 

The variance of an interacted residual λε  is var varλε λ σ εb g d i= 2 2 , i.e., the same for positive 

and negative λ 's  of the same magnitude.  However, the implied correlation(s) with other residuals 
may have switched signs.  For example, if a two-equation model with ε  in one equation and λε  
in the other, the correlation between ε  and λε  is equal to 1 if λ > 0  and –1 if λ < 0 .  Similarly, 
if δ  and ε  are defined as part of the same distribution with correlation ρ , the correlation 
between δ  and λε  is equal to ρ  if λ > 0  and −ρ  if λ < 0 . 
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6. Starting Values 

6.1. General Overview 
The importance of very carefully specifying starting values can hardly be overstated.  If initial 

parameter values are far removed from their optimal values, the search process may take a long 
time, and in many cases optimization fails altogether.  Furthermore, the likelihood function need 
not be concave when equations are combined, so that poor starting values may lead to a local 
likelihood maximum.  Always specify starting values as close to optimal values as possible, using 
all information available.  This chapter summarizes some rules of thumb for selecting good 
starting values.  Parameters are initialized in the “starting values” statement (Section 13.16). 

The more complicated the model, the more urgent the need for selecting good starting values.  
Unfortunately, finding good starting values is particularly difficult in complicated models.  The 
solution is to strip the model down to its basics, estimate those first individually, and build up 
gradually to complicated models.  aML’s capabilities for searching in multiple rounds over 
increasingly large numbers of parameters tend to be very helpful in this building process, as 
shown below.  Also, auxiliary program update (explained in Sections 2.1.7 and 15.1) is a helpful 
utility in this process.  In general, building up models is best done as follows. 

1. Start with a single equation model and keep the residual structure as simple as possible (i.e., 
without heterogeneity).  First find a good intercept value.  Sometimes the mean outcome, as 
available from the data summary (.sum) file, may be of guidance, as explained in the sections 
below for individual models.  If no good intercept is available, start with zero and estimate the 
equation with an intercept only.   

2. Once a good intercept is found, free up some explanatory covariates. 
3. Add residuals (heterogeneity) to the model, one at a time.  Do not start standard deviations of 

residuals out at (close to) zero, as the search process tends to have trouble departing from 
zero.  Instead, start standard deviations roughly at the standard deviation of the outcome.  For 
heterogeneity in qualitative outcome models, standard deviation values in the 0.5 to 1.0 range 
tend to work well.  It is often a good idea to first estimate the standard deviation while only 
allowing the intercept to vary. 

4. When including additional regressors, start them at zero. 
5. Once the single equation model with regressors and residual structure has converged, it may 

be joined with other single equation models to form a system of simultaneous equations.  
Specify the joint model such that its initial value is equivalent to the underlying single 
equation models which were independently estimated.  For example, if the joint model 
introduces a correlation coefficient, initialize it at zero.  If a latent outcome enters as 
explanatory factor in another equation, start its coefficient at zero.  First estimate only the 
residual structure and all intercepts; free up more parameters in subsequent rounds. 
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6.1.1. Failure to Converge 

It is not uncommon (and very frustrating) for complex multiprocess and multilevel models to 
not converge.  This may be due to a variety of causes.  

Some models do not converge because they are underidentified.  For example, an attempt to 
estimate heterogeneity where no repeated outcomes are available will typically result in a standard 
deviation approaching zero; similarly, an attempt to estimate both an intercept and an exhaustive 
set of indicator variables (e.g., dummy variables for both male and female) will fail because of 
multicollinearity.  Generally speaking, if the smallest eigenvalue of the matrix of second 
derivatives (which is written out every iteration) is close to zero, a likely cause is that the model is 
underidentified.  Tinkering with starting values will not help in these cases; some restriction must 
be imposed, mostly dictated by the theoretical underpinnings of the model. 

If an identified model fails to converge, try some other starting values and carefully follow the 
directions above and below.   

If an identified model with good starting values does not converge, the culprit may be in a 
poor search direction.  The search direction is based, in part, on the matrix of second derivatives of 
the log-likelihood with respect to model parameters (Hessian matrix).  By default, this matrix is 
approximated using the BHHH method.  For small samples, this approximation can be poor.  Try 
specifying “option numerical search”, which calculates the Hessian matrix more 
accurately.  See page 270 for details. 

If all else fails, try a grid search (Sections 6.2 and 13.16). 

6.1.2. Order of Starting Values 

All model parameters need to be initialized in the “starting values” statement.  Each 
model parameter is part of a model building block:  a regressor set, distribution, parameter, spline, 
et cetera.  These building blocks are defined prior to their use in model statements.  For example: 

define regressor set BetaX; ... 
define normal distribution; ... 
define parameter Lambda; 
define spline AgePattern; ... 

Each definition introduces model parameters.  These parameters need to be initialized in the 
order in which their corresponding building blocks were defined.  In the above example, the 
regression parameters of regressor set BetaX need to be initialized first, followed by the standard 
deviations and correlations of the distribution, followed by the Lambda parameter, and finally 
followed by the slope parameters of the AgePattern spline. 

Building blocks may imply multiple parameters.  For example, a regressor set with four 
variables introduces four parameters, a bivariate distribution introduces two standard deviations 
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and one correlation, etc.  Refer to the exact descriptions of building block definitions (Section 
13.2) for the order in which these parameters need to be initialized: 

Building block: Page: 
Parameter 284 
Regressor set 286 
Spline 290 
Vector 295 
Matrix 299 
Normal distribution 301 
ARMA(p,q) distribution 308 
Cumulative AR(1) distribution 313 
Finite mixture distribution 315 

6.2. Grid Searches 
Complex multiprocess and multilevel models may have non-concave likelihood surfaces and 

even local maxima.  A grid search can help explore the likelihood surface and avoid convergence 
on a local maximum. 

Grid searches may be specified as part of the “starting values” statement.  Instead of 
initializing a parameter to a certain value, you may specify a lower bound, and upper bound, and 
the number of values to be tried.  For example: 

starting values; 
 
<...> 
Beta1     T     grid(-2, 10, 11) 
<...> 
; 

aML will first evaluate the log-likelihood for 11 values of Beta1, equally spaced between –2 
to 10 (namely –2, -.8, .4, 1.6, 2.8, 4, 5.2, 6.4, 7.6, 8.8, and 10).  It will select the value with the 
highest log-likelihood and proceed with its usual Gauss-Newton search algorithm.  More 
generally, the syntax is: 

<parameter_name>     {T|F}    grid(a, b, n) 

where a and b and lower and upper bound, respectively, and n is the number of grid points. 

Grid searches may be conducted over multiple parameters, i.e., in a multidimensional space.  
For example,  

starting values; 
 
<...> 
Beta1     T     grid(-2, 10, 11) 
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Beta2     T     grid(0, 5, 6) 
<...> 
; 

results in a grid search over the (Beta1, Beta2) space between coordinates (-2, 0), (-2,5), (10,0), 
and (10, 5).  There will be 11*6=66 function evaluations.  There is no limit to the number of 
dimensions or the number of grid points.  Naturally, the time required to conduct the grid search is 
linear in the number of points, which can increase rapidly with the number of dimensions. 

Consider sample file Chapter6\grid.aml, based on the very simple probit model of high 
school attainment that was illustrated in Section 2.1.  (Obviously, conducting a grid search on a 
simple probit model is unnecessary, but it will do to illustrate various features.)  The control file 
is: 

  1 dsn = ..\Chapter2\education.dat; 
  2  
  3 define regressor set BetaX; 
  4    var = 1 female birth18 dadltHS dadcoll momltHS momcoll poorkid; 
  5  
  6 probit model; 
  7    outcome = HSgrad; 
  8    model = regset BetaX; 
  9  
 10 starting values; 
 11  
 12 Constant    T    grid(-4, 4, 9) 
 13 female      T    0 
 14 birth18     T    0 
 15 dadltHS     T    0 
 16 dadcoll     T    0 
 17 momltHS     T    0 
 18 momcoll     T    0 
 19 poorkid     T    0 
 20 ; 

aML will evaluate the log-likelihood for nine values of the Constant parameter, equally 
spaced between –4 and 4.  By default, aML writes out grid search results to both the screen and 
the output file, in slightly different manners.  In screen output, it adds asterisks for parameter 
values that improve the likelihood: 

    Constant        ln-L 
  ---------------------- 
        -4.0  -4061.1623 * 
        -3.0  -2590.3354 * 
        -2.0  -1484.8263 * 
        -1.0  -735.32803 * 
         0.0  -326.47232 * 
         1.0  -213.16019 * 
         2.0  -307.89262 
         3.0  -522.53989 
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         4.0  -818.46043 
 
Optimal grid point (ln-L = -213.1601913): 
 
Constant         1.0 

The best value is the one with the last asterisk, Constant=1.  This value is used as starting 
value in subsequent model estimation.  By default, output file grid.out contains similar 
information without improvement asterisks.  Optionally, you may direct grid search results to 
another file: 

option gridfile = filename; 

This may be useful for further analysis of the likelihood surface using a third-party software 
package.  The file would contain the following: 

    Constant        ln-L 
  ---------------------- 
        -4.0  -4061.1623 
        -3.0  -2590.3354 
        -2.0  -1484.8263 
        -1.0  -735.32803 
         0.0  -326.47232 
         1.0  -213.16019 
         2.0  -307.89262 
         3.0  -522.53989 
         4.0  -818.46043 

Users of Stata may find it convenient to write grid search results to a Stata dictionary file.  If 
the optional gridfile name ends in .dct, aML writes the results in Stata dictionary format.  For 
example, “option gridfile=grid.dct” results in the following grid.dct file: 

dictionary { 
   Constant 
   lnl       "Log-Likelihood" 
} 
        -4.0  -4061.1623 
        -3.0  -2590.3354 
        -2.0  -1484.8263 
        -1.0  -735.32803 
         0.0  -326.47232 
         1.0  -213.16019 
         2.0  -307.89262 
         3.0  -522.53989 
         4.0  -818.46043 
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The results may then be conveniently read in and plotted:26 
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26 This graph was produced by the following Stata commands: 

infile using grid.dct 
summarize lnl 
summarize Constant if lnl==r(max) 
global max=r(mean) 
graph lnl Constant, xlabel xline($max) c(l) 

6.3. Probit Model 
Without any regressors, the optimal intercept value is the inverse cumulative normal of the 

fraction successes:  

�β 0
1= −Φ Yc h   where  Y

n
Yi

i

n

=
=
∑1

1

. 

The fraction successes, Y , is directly available from the data documentation (.sum) file.  The 
inverse cumulative normal function, Φ− ⋅1b g , is built-in in most statistical packages.  Start all 
regressors at zero and estimate the intercept and regressors before adding variance components 
(heterogeneity). 
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6.4. Logit Model 
Without any regressors, the optimal intercept is the logarithm of the odds ratio: 

� logβ 0 1
=

−
F
HG
I
KJ

Y
Y

  where  Y
n

Yi
i

n

=
=
∑1

1

. 

The fraction successes, Y , is directly available from the data documentation (.sum) file.  
Start all regressors at zero and estimate the intercept and regressors before adding variance 
components (heterogeneity). 

6.5. Continuous Model 
The search procedure that aML applies is not particularly efficient at finding maximum 

likelihood parameter estimates of continuous models.  The number of iterations required to 
achieve convergence tends to be larger than the number required for qualitative outcome models, 
and the search algorithm tends to step out relatively many times the search direction (which is 
based on a quadratic approximation).  For example, it is not uncommon to achieve better 
likelihoods as far as eight or sixteen times the search direction.  You may gain some efficiency by 
specifying “option save step” (page 276). 

The best way to find good starting values is to run an Ordinary Least Squares (OLS) 
regression in your (SAS, Stata, SPSS) data preparation package.  OLS yields the same coefficients 
on explanatory covariates as maximum likelihood estimation of a model with only one 
independently and identically distributed normal residual, but does so far more efficiently.  Its 
estimate of the mean squared error is almost identical to the maximum likelihood estimate of the 
residual’s variance.  In the case of a multilevel continuous outcome model, use the OLS estimates 
as starting values for covariates, and distribute the mean squared error over the residuals in your 
model.  For example, consider a continuous outcome model: 

y x ui i i= ′ + +β ε , 

where i denotes a repeated outcome within an observation; the observation subscript has been 
suppressed.  This is a two-level model.  First estimate a simpler single-level model, without 
heterogeneity, using ordinary least squares: 

y x vi i i= ′ +β , 

where all outcomes are treated independently.  The estimated �β  provides good starting values for 
the multilevel model of interest.  The estimated mean squared error provides the OLS estimate of 
the residual variance, σ v

2 .  Distribute this variance over ε  and ui  to get starting values for σ ε
2  

and σ u
2 .  For example, without guidance from theory on their relative magnitudes, you could set: 
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σ σε
2 1

2
2= v ,  or  σ σε = 1

2 2v , and similarly σ σu v= 1
2 2 . 

If there are more than two variance components, we recommend that you first estimate two, 
then three, et cetera.  In the example of student test scores in Section 4.1.2 above, we distributed 
the OLS variance over four residuals and estimated their variances one-by-one in multiple rounds.  
Although only one variance was freed up from round to round, the model always had four 
residuals.  If there would have been convergence problems, we would have first estimated a model 
with just two residuals; then included a third residual and let that model converge; and only then 
add a fourth residual.   

! Failure to converge is often caused by poor starting values and/or by too many 
parameters that need to settle in at the same time.  A good approach is to return to a 
previous specification that did converge successfully, and free up only one or a small 
number of parameters. 

If OLS starting values are not available, initialize the intercept to the mean of the outcome 
variable.  This mean is directly available from the data documentation (.sum) file.  (If the 
outcome is the logarithm of a data variable, outcome=log(varname), you need to compute the 
average of the logarithms separately, because the mean logarithm is not equal to the logarithm of 
the mean.)  The initial model specification should only include one residual that is drawn 
independently (draw=_iid) for each outcome.  Its standard deviation should be initialized to the 
standard deviation of the outcome variable, also directly available in the data documentation file.  
Start all regressors at zero and estimate the intercept, regressors, and standard deviation of the 
residual.  Then proceed with adding variance components (heterogeneity), as described above. 

6.6. Hazard Model 
As with all other model types, hazard models should be built up gradually.  First, estimate a 

Gompertz hazard without covariates.  The Gompertz hazard is linear in the log-hazard: 

lnh t tb g = +γ γ0 1 . 

Baseline duration patterns in aML are always piecewise-linear (piecewise Gompertz); the 
Gompertz itself is a special case using a duration spline without nodes.  Initialize γ 1  to zero; 
intercept γ 0  follows from 

γ 0
1

1
= −
RST

UVW=
∑ln

N
t

nc
i

i

N

, 

where N  is the number of spells, Nnc  the number of noncensored spells, and ti  the duration of 
spell i.  For censored spells, ti  is simply the duration from the beginning of the spell to the last 
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known end-point.  For censored spells, however, aML requires that the user specify two duration 
variables which mark the lower and upper bound of the event window.  For the purpose of 
initializing the intercept, such bounds very much complicate matters.  We suggest that you simply 
set ti  equal to the midpoint of the event window.  The durations should follow readily from your 
data preparation package.  Alternatively, note that aML’s output files provide summary statistics 
on spell durations, as shown below.  

Once a Gompertz baseline hazard function has been estimated, specify about four nodes, 
spread out roughly evenly over the relevant spells range.  Initialize the intercept at the first-stage 
estimated intercept, and all slopes at the first-stage estimate slope.  Inspect the resulting pattern 
and remove nodes of which the surrounding slopes are roughly equal.  Typically, two or three 
nodes are sufficient to adequately capture the baseline duration pattern.  Experiment by shifting 
individual nodes to find a pattern that captures the essence of the pattern in the data.  Finally, add 
key regressors and additional duration patterns, if any.  Heterogeneity is best added last. 

Consider an example of marriage durations, i.e., the hazard of divorce (Sections 2.5 and 3.5).  
Our data preparation package indicates (not shown) that the average duration of noncensored 
spells is 10.106 years, of censored spells 19.438 years.  This may also be derived from summary 
statistics that aML writes out: 

       censor |      #        Mean     Std Dev         Min         Max 
   -----------+------------------------------------------------------- 
     / lower  |   1243    8.862188    7.526053        0.06      50.075 
   0 - upper  |   1243    11.34998    9.796729       0.142      70.439 
     \ window |   1243    2.487735     6.34943       0.006      46.954 
   1 - spell  |   2995     19.4383    15.48876       0.063      73.068 

Note that the average of the event windows’ lower and upper bounds is 
(8.862188+11.34998)/2 = 10.106.  A good starting value for the intercept is therefore  

−
+RST

UVW = −ln * . * . .1243 10106 2995 438
1243

4 04219 ,  

and the first step is to estimate a Gompertz duration dependency: 

define spline DurMar; nodes = ; 
 
define regressor set Getdiv; var = 1; 
 
hazard model; 
   censor=censor; duration=lower upper; 
   model = durspline(origin=0, ref=DurMar) + 
      regset Getdiv; 
 
starting values; 
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durslope   T     0 
Constant   T    -4.042 
; 

We update the starting values with converged values and add four nodes at locations that we 
guess may be relevant: 

define spline DurMar; nodes = 2 6 10 20; 
 
define regressor set Getdiv; var = 1; 
 
hazard model; 
   censor=censor; duration=lower upper; 
   model = durspline(origin=0, ref=DurMar) + 
      regset Getdiv; 
 
starting values; 
 
dur0-2      T   -.0427148839 
dur2-6      T   -.0427148839 
dur6-10     T   -.0427148839 
dur10-20    T   -.0427148839 
dur20+      T   -.0427148839 
Constant    T   -3.6518258127 
; 

We find that the hazard of divorce increases steeply during the first two years of marriage, is 
almost flat for the next four years, declines for the next four years, remains flat for another ten 
years, and then declines.  If two slopes on contiguous segments had been about the same, we 
would have eliminated the node separating those segments.  Here, we decide to explore the steep 
increase in the first two years by shifting the first node to 1 and moving the second to 4 years.  The 
increase appears mostly due to the first year.  We experiment some with the outer nodes and settle 
on nodes at 1, 4, 15, and 25 years.27  Updating the slopes with converged values, we add 
covariates of interest: 

define spline DurMar; nodes = 1 4 15 25; 
  
define regressor set Getdiv; 
   var = 1 (marnum==2) (marnum>=3) heblack (hiseduc<12)  
         (hiseduc>=16) (agediff>10) (agediff<-10)  
         (heblack!=sheblack) numkids; 

                                                           
27 There are no hard rules on choosing nodes.  We could have left the nodes at 2, 6, 10, and 20 years 

with virtually the same estimates of covariate parameters of interest.  Try it out for yourself using 
divorce3.dat in the Samples\Section3 subdirectory. 
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hazard model; 
   censor=censor; duration=lower upper; timemarks=time; 
   model = durspline(origin=0, ref=DurMar) + 
      regset Getdiv; 
  
starting values; 
 
dur0-1      T    1.7704887806 
dur1-4      T     .0734946166 
dur4-15     T    -.0492449675 
dur15-25    T     -.028029827 
dur25+      T    -.1320915794 
Constant    T   -5.6549655723 
mar2        T    0 
mar3+       T    0 
heblack     T    0 
dropout     T    0 
college     T    0 
heolder     T    0 
sheolder    T    0 
mixrace     T    0 
numkids     T    0 
; 

As the last step, we add heterogeneity.  Note that we initialize the standard deviation of the 
heterogeneity component to 0.6 (which tends to be in the right ballpark), and that we first allow all 
other coefficients to settle in before freeing up this standard deviation: 

define spline DurMar; nodes = 1 4 15 25; 
  
define regressor set Getdiv; 
   var = 1 (marnum==2) (marnum>=3) heblack (hiseduc<12)  
         (hiseduc>=16) (agediff>10) (agediff<-10)  
         (heblack!=sheblack) numkids; 
 
define normal distribution; dim=1;  
   number of integration points = 4; 
   name= delta; 
 
hazard model; 
   censor=censor; duration=lower upper; timemarks=time; 
   model = durspline(origin=0, ref=DurMar) + 
      regset Getdiv + 
      intres(draw=1, ref=delta); 
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starting values; 
 
dur0-1      TT    1.8140846191 
dur1-4      TT     .0923564046 
dur4-15     TT    -.0388807972 
dur15-25    TT    -.0229186888 
dur25+      TT    -.1289813362 
Constant    TT   -5.6044539064 
mar2        TT     .2384592885 
mar3+       TT      .603922662 
heblack     TT      .010035551 
dropout     TT    -.3175157405 
college     TT    -.3050647156 
heolder     TT    -.5203170435 
sheolder    TT     .1993272706 
mixrace     TT     .3614972652 
numkids     TT    -.0791978408 
SigDelta    FT     .6; 

While the steps leading up to this final specification may appear laborious, you will find that 
they actually save time (not to mention frustration!)  Good starting values are critical to the 
successful estimation of complicated models. 

6.7. Binomial Model 
The implementation of binomial models in aML offers three alternatives to specify the 

probability of a success.  The simplest form is a direct specification.  Its syntax is: 

prob = linear(...); 

where the argument to linear(...) may be any linear combination of parameters, regressors 
sets, and integrated residuals.  (It is the user’s responsibility to ensure that the probability is 
between zero and one.) The intercept follows directly from the data summary (.sum) file: it is the 
ratio between the means of the outcome and exposure variables.  Start regressors at zero, and add 
residuals last. 

More commonly, the probability is a logistic or probit (cumulative normal) transformation of 
parameters, regressor sets, and integrated residuals.  The syntax for the logistic transformation is: 

prob = logistic(...); 

where the argument to logistic(...) may be any linear combination of parameters, regressors 
sets, and integrated residuals.  Denote the argument by ′ +β εX ; the transformation is given by: 



6.7.  Binomial Model 213 

 

U
se

r’s
 G

ui
de

 

p
X

=
+ − ′ −

1
1 exp( )β ε

. 

Note that this transformation guarantees 0 1< <p .  In the absence of regressors and 
integrated residuals, the intercept is analogous to the log-odds ratio in logit models: 

� logβ 0 1
=

−
F
HG
I
KJ

f
f

  where  f Y
E

=  

and Y  and E  denote the mean outcome and exposure, as reported in the data documentation 
(.sum) file.  Add regressors and subsequently integrated residuals, if any.  Similarly, the syntax 
for the probit (or cumulative normal) transformation is: 

prob = normprob(...); 

where the argument to normprob(...) may be any linear combination of parameters, regressors 
sets, and integrated residuals.  Denote the argument by ′ +β εX ; the transformation is given by: 

p X= ′ +Φ β εb g . 
Note that this transformation guarantees 0 1< <p .  In the absence of regressors and 

integrated residuals, the intercept is  
�β 0

1= −Φ fb g , 
with f defined as the ratio of the mean outcome and exposure, as above.  Add regressors and 
subsequently integrated residuals, if any.   

6.8. Poisson Model 
Poisson models tend to be sensitive to good starting values.  The likelihood surface is very flat 

around poor starting values and the search algorithm may not find its way out of the flat region. 

In the absence of varying exposure across observations, the optimal intercept of the Poisson 
incidence is simply the mean of the count outcome variable iY , as found in the data documentation 
(.sum) file.  aML requires specifying the incidence as: 

incidence = exp(...); 

so that the optimal intercept is actually the logarithm of the mean of the outcome, ( )0 log Yβ = .   

If an exposure variable iE  is included in the model specification, the optimal intercept of the 
log-incidence is the difference between the logarithms of the outcome and the exposure variables:  

( ) ( )0 log logY Eβ = − . 
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With this intercept, first estimate regressors (initialized at zero), then add heterogeneity, if 
any. 

The default search direction, based on the BHHH approximation to the matrix of second 
derivatives, is sometimes fairly poor in Poisson models, and particularly so with small sample 
sizes.  Consider the “option numerical search” (pages 64 and 202; Section 13.1.4). 

6.9. Negative Binomial Model 
Negative binomial models are somewhat more complicated, because there are two equations: 

one for the dispersion or log-dispersion and one for the log-incidence.  We suggest initializing the 
dispersion to one (or the intercept of the log-dispersion to zero).  Similarly, initialize the intercept 
of the log-incidence to zero.  Let the dispersion and incidence intercepts settle in before adding 
covariates.  Heterogeneity in the incidence equation, if any, should be added last. 

The default search direction, based on the BHHH approximation to the matrix of second 
derivatives, is sometimes fairly poor in negative binomial models, and particularly so with small 
sample sizes.  Consider the “option numerical search” (pages 64 and 202; Section 13.1.4). 

 

6.10. Multinomial Logit Model 
A multinomial logit model with n potential outcomes requires n-1 model equations.  The 

intercepts in those equations are simply the logarithm of odds ratios (relative frequencies of the 
outcomes). 

Consider the occupational choice model of Section 2.10.  The occupational choice outcome is 
distributed as follows: 

        occ |       Freq.    Percent 
------------+------------------------ 
          1 |        569       28.45 
          2 |        531       26.55 
          3 |        344       17.20 
          4 |        556       27.80 
------------+------------------------ 
      Total |       2000      100.00 

Suppose we specify model equations for choices 1, 2, and 3, all relative to omitted category 4.  
The intercepts of those models are ( )ln 569 / 556 , ( )ln 531/ 556 , and ( )ln 344 / 556 , respectively. 

The multinomial logit model tends to be very well-behaved and robust to poor starting values.  
Except with exceptionally large data sets, it is probably not worth your while to figure out the 
optimal intercepts.  You could initialize intercepts to zero and first let aML estimate them, then 
add regressors, and finally heterogeneity, if any. 
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6.11. Multinomial Probit Model 
A multinomial probit model with n potential outcomes requires n-1 model equations.  Each 

model equation may have an intercept and each must have a residual from a normal distribution 
with dimension n-1.   

The standard deviations of the n-1 residuals are not identified.  Initialize them to one and do 
not estimate them.  Initialize the ( )( )1 2 / 2n n− −  correlations to zero and the n-1 intercepts also to 
zero.  First estimate the intercepts only; then free up the regressors; then free up correlations; and 
introduce heterogeneity, if any, last. 

6.12. Multiprocess Models 
Equations in multiprocess models should always first be estimated individually following the 

steps outlined above for single equation models.  Once the intercept, key covariates, and 
(univariate) heterogeneity have been estimated, the equations may be combined one-by-one.  This 
typically requires that correlation between residuals in multiple equations is introduced, i.e., 
multiple univariate distributions are combined into multivariate distributions.  Initialize the 
standard deviations at their converged values and correlation coefficients at zero.  A good check 
on the correct specification of a joint model is that the log-likelihood of the joint model in the first 
iteration is equal to the sum of the converged log-likelihoods of single equation models.   

Similarly, if the (latent) outcome of one equation enters the equation of another model as 
explanatory covariate, initialize its coefficient to zero, so that the initial model is identical to the 
combination of two single equation models.   

At first, only estimate the residual structure and the intercepts; free up other covariates later.  
If the model fails to converge, back up and free up alternative subsets of parameters before 
attempting the fully joint model.  Pay particular attention to potentially endogenous variables, as 
their coefficients are most likely to change substantially.  After the intercepts and residual 
structure have settled in, you may want to also free up potentially endogenous variables before 
estimating all parameters. 
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7. Roadmap 

As explained in the User’s Guide, the main stages of using the aML package are data 
preprocessing, model specification and estimation, and results interpretation.  This Reference 
Manual is organized in roughly the same order.  It contains the following chapters. 

8.  Raw2aml Command Line Options........................................................................................221 

This chapter documents the options and specifications that the user provides as arguments 
to the raw2aml command. 

9.  Raw2aml Control File Statements ........................................................................................224 

This chapter documents all statements in the raw2aml (.r2a) control file: general 
options, input and output file specifications, data structures, and variable lists. 

10.  ASCII Input Data .................................................................................................................234 

This chapter documents the exact order of variables in the ASCII input data set, including 
IDs, data structure numbers, number of subbranches specifications, for compressed and 
rectangular formats. 

11.  Raw2aml Data Documentation File ....................................................................................255 

This chapter helps interpret the human-readable output file (.sum file) that raw2aml 
produces. 

12.  aML Command Line Options .............................................................................................263 

This chapter documents the options and specifications that the user provides as arguments 
to the aml command. 

13.  aML Control File Statements ..............................................................................................266 

This chapter documents all statements in the aML (.aml) control file: general options, 
input data specification, definitions of model elements (“building blocks”), model 
specifications, and starting values.  In other words, the portion of this Reference Manual 
that will be consulted most often. 

14.  aML Output ..........................................................................................................................414 

This chapter helps interpret the output file (.out file) that aML produces. 

15.  Auxiliary Utility Programs ..................................................................................................431 
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This chapter documents four little programs which make the aML user’s life a little 
easier:  update, mktab, amltest, and points. 

16.  Miscellaneous Features ........................................................................................................435 

This section documents miscellaneous features in the aML package, including its macro 
language capabilities. 
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8. Raw2aml Command Line Options 

Raw2aml features many options.  Some may be specified on the command line, i.e., in the 
DOS or UNIX window, when you invoke the raw2aml executable program; some may be 
specified in the raw2aml control file, i.e., the .r2a file; and some may be specified either way.  
This chapter documents command line options; Chapter 9 deals with control file options.   

Raw2aml may be invoked with the following command line options: 

raw2aml [-h] [-r] [-o file.dat] [-m macrofile] file.r2a 

Command line options may appear in any order.  The remainder of this chapter explains how each 
option alters raw2aml’s default behavior. 

Option -h 

Option -h (“help”) provides limited on-line help.  It lists all supported command line 
options and concisely explains their use. 

Option -r 

By default, raw2aml checks whether the specified output data file already exists on 
disk.  If it indeed already exists, it asks the user for permission to overwrite.  Option -r 
(“replace”) causes raw2aml to overwrite the output data file without confirming that this 
is OK. 

Option -o file.dat 

Option -o (“output”) definitively specifies the output data file.  There are three ways 
to specify the name of the output data file.  Raw2aml processes them in the following 
order: 

• Command line option -o file.dat.  If this command line option is specified, 
raw2aml will create the specified data file.  (If no extension is specified, raw2aml 
will add .dat; see below.)   

• If command line option -o is not specified, raw2aml parses the raw2aml control file 
for “option output data file = file.dat”.  If that control file option is 
specified, raw2aml will create the specified data file.  (If no extension is specified, 
raw2aml will add .dat; see below.)   

• If the output data set name is neither specified on the command line nor in the 
control file, raw2aml applies its default naming convention based on the name of the 
control file.  By default, the output data file name is equal to the control file name, 
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where extension .r2a is replaced by .dat.  If the control file name does not contain 
extension .r2a, extension .dat is appended.  For example, if the control file is 
“abcdef.r2a”, the output data file will be “abcdef.dat”; if the control file is 
“abcdef”, the output data file will be “abcdef.dat”; if the control file is 
“abcdef.ctl”, the output data file will be “abcdef.ctl.dat”. 

Raw2aml likes output data file names to have the .dat extension.  If you specify an 
output data file name, whether on the command line or in the control file, which does not 
contain an extension, raw2aml will append .dat to that name.  However, if you do 
specify an extension—any extension—, raw2aml will respect that choice and name the 
output data file accordingly.  For example, if you specify “abcdef”, raw2aml will create 
output data file “abcdef.dat”; if you specify “abcdef.data”, raw2aml will create 
output data file “abcdef.data”; if you specify “abcdef.” (with an explicit dot but no 
extension), raw2aml will create output data file “abcdef”.  And, of course, 
“abcdef.dat” is taken literally. 

In addition to converting ASCII input data into an output data file, raw2aml creates a 
file with summary statistics of the data.  This summary file may be read using any text 
editor.  Its name is derived from the name of the output data file.  If the output data file 
has the conventional .dat extension, the summary file name will be identical but with 
extension .sum instead of .dat.  If the output data file name does not have a .dat 
extension, .sum is appended to its name.  For example, the summary file for 
“abcdef.dat” will be “abcdef.sum”; for “abcdef” it will be “abcdef.sum”; and for 
“abcdef.data” it will be “abcdef.data.sum”.   

We strongly recommend that you follow our convention of naming output data files 
and summary files with .dat and .sum extensions, respectively.  It greatly helps in 
keeping your files organized. 

Option -m macrofile 

Raw2aml control files may contain user comments which raw2aml should ignore 
(Section 16.1).  This is implemented through a control file pre-processor which strips out 
all user comments.  By default, the stripped-down control file is saved only temporarily 
to disk, and is removed as soon as raw2aml has finished parsed the control file 
statements.  Option -m causes raw2aml to save the stripped-down control file 
permanently to disk, so that you may look at its contents.  Its name is the user-specified 
macrofile.   

There is no reason why you would ever want to look at a version of your control file 
without comments.  A more useful purpose of the -m option is to debug macros that you 
may embed in raw2aml control files.  The raw2aml control file pre-processor namely 
supports a simple macro language (Section 16.2).  The stripped-down control file has all 
macros resolved; it is what raw2aml actually parses.  Should raw2aml protest at your use 
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of macros, then this will provide a way to determine how your macros were resolved.  It 
is a particularly useful option when using nested macros, which may get tedious. 

Argument file.r2a 

The last command line argument, file.r2a, is not optional.  It specifies the name 
of the raw2aml control file.  We wrote file.r2a, with extension .r2a, to remind you 
of the convention to name control files with a .r2a extension.  However, you may 
specify any name. 

If you do not specify an extension, raw2aml will first look for a control file with 
extension .r2a.  If such a file does not exist on disk, it will look for the file as you 
specified it.  For example, if you specify argument “abcdef”, raw2aml will first attempt 
to open “abcdef.r2a”; if such a file does not exist, it will look for “abcdef”.  If you 
specified “abcdef.ctl”, raw2aml will first look for “abcdef.ctl.r2a”, then for 
“abcdef.ctl”.  

 



224 9.  Raw2aml Control File Statements 

 

R
ef

er
en

ce
 M

an
ua

l 

9. Raw2aml Control File Statements 

The raw2aml control file consists of two parts.  The first part, described in Section 9.1, 
specifies global control features such as conversion options and input and output file names.  The 
second part, documented in Section 9.2, specifies the structure of the data that need to be 
converted.  This includes labels of data structures, their level structure, and variable names.   

9.1. Global Control 
The general part of the raw2aml control file specifies general options and the names and 

locations of input and output files.  The syntax is: 

[option observations = {n|all};] 
[option irrelevance check ={yes|no|n};] 
[option deviations;] 
[option crossmeans = no;] 
 
ascii data files = filename [filename ... filename]; 
[id file = filename;] 
[option output data file = filename [(replace)];] 

We now describe each statement in detail. 

option observations = {n|all}; 

This option restricts the number of observations that raw2aml will convert.  It is 
sometimes useful for testing purposes.  The default is all, which is understood to be all 
observations.  If you specify a numeric value, say, “option obs=100”, only the first 
100 observations in the ASCII input file(s) will be converted and written out to the output 
data file.  If the data contain fewer observations than the number specified for conversion, 
then all observations are converted and the option has no effect. 

option irrelevance check = {yes|no|n}; 

As explained in Section 3.3, ASCII data may be written in either ‘compressed’ or 
‘rectangular’ form.  Suppose the maximum number of level 3 branches is 10; many 
records will have fewer.  In SAS it is possible to output only relevant branches by 
looping over only those branches.  In Stata, however, there is no possibility to loop over 
an observation-dependent number.  All 10 subbranches must be output, even though 
some of them are irrelevant. 

The “irrelevance check” option provides a data integrity check for rectangular 
data forms.  The user should set irrelevant variables to a reserved integer number such as 



9.1.  Global Control 225 

 

R
ef

er
en

ce
 M

an
ua

l 

-99.  The program will then check that irrelevant variables are equal to -99.  If any 
irrelevant variable is not -99, the program aborts with an error message.  If any relevant 
variable is equal to -99, raw2aml issues a warning. 

The default is to check that irrelevant variables have been set to -99.  Instead, 
“irrelevance check=no” does not check anything, and “irrelevance check=n” 
checks that irrelevant variables have been set to a user-specified integer, n.  If you like, 
you may explicitly state the default as “option irrelevance check=-99” or 
“option irrelevance check=yes” or just “option irrelevance check”. 

The irrelevance check only applies to rectangular data.  In data with three levels, 
only level 3 variables will be checked; in data with four levels, both level 3 and 4 
variables are checked; et cetera. The special value to which irrelevant variables are set 
must be the same for all data structures. 

We strongly recommend that you allow raw2aml to check the values of irrelevant 
data items.  It provides good protection against unintended misalignment of variables.  
Also, we recommend that you scan the summary statistics that raw2aml generates in the 
summary (.sum) file.  A minimum or maximum that is equal to, say, -99, may be 
indicative of incorrect ordering of variables. 

option deviations; 

By default, the output data will be in absolute value, but optionally, some or all 
variables may be converted into deviations from their means.  This may under some 
circumstances improve search stability, especially when new regressors are added to a 
model specification. 

If “option deviations” is specified, all data variables will in principle be 
converted into deviations from their mean.  Control variables such as IDs and data 
structure numbers always remain in absolute value.  However, variables that are listed in 
any variable list (see below) may remain in absolute value by attaching “(a)” to their 
names.  This will be essential for variables that are used as weights, outcomes, duration 
spline origins, et cetera.  Conversely, any variable with “(d)” attached to its name will 
be converted into deviations, regardless of the deviations option.  In other words, the 
deviations option sets the default for all variables.  This default is overridden by attaching 
either (a) (“absolute”) or (d) (“deviations”) to variable names.   

Consider the following excerpt of a raw2aml control file: 

option deviations; 
<other statements...> 
var = weight(a) censor(a) age income educ; 

All data variables in the ASCII input file will be converted into deviations from their 
means, except variables weight and censor which remain untransformed.  
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When a variable appears in multiple data structures, the user may want the mean to 
be computed over all data structures, or he may want the mean to be specific to the 
current data structure.  See “option crossmeans”. 

You may transform variables into deviations from any real number.  For example, 
suppose your data contain variable year which represents the calendar year (1980, 1981, 
et cetera) to which the record refers.  You decide that you would like, say, 1990, to be the 
reference year in your models.  This is facilitated by writing: 

var = ... time(d=1990) ...; 

The output data set will contain time in deviations from 1990, rather than in absolute 
value or in deviations from its mean.  Note that deducting zero is equivalent to keeping a 
variable in absolute value, so that, for example, “censor(d=0)” yields the same result 
as “censor(a)”. 

option crossmeans = no; 

It is often convenient to split data into separate data structures.  If deviations from 
means are taken, either because of “option deviations” or because “(d)” is attached 
to a variable name, the means may be computed within data structure or over all data 
structures in which the variable appears.  The default is to compute the mean of a variable 
over all data structures in which that variable appears; “option crossmeans=no” 
computes means separately by data structure.  

For example, suppose data for males and females are split into separate data 
structures.  If the analysis will be conducted entirely separately for males and females, 
you may want raw2aml to compute means separately for males and females.  However, if 
males and females are pooled, the overall mean should be computed.  Separate means 
would namely absorb some of the sex intercept difference.  This is most clearly 
illustrated with the variable for sex, say, male, which is always zero in the female data 
structure and one in the male data structure.  If deviations from means were taken, where 
the means are computed within each data structure, then the male variable would always 
end up being zero.  For females, male is always zero, so its mean is zero, so male in 
deviations from its mean is always zero; for males, male is always one, so its mean is 
one, so male in deviations from one is also always zero.  In other words, deviations from 
means within data structures reduces some (and here all) of the variation in the variable 
across data structures. 

It is not possible to use overall means for some variables and within means for 
others: the crossmeans option applies to all variables. Should this feature be undesired, 
then the user can compute means in whichever way he wants, and attach that mean to 
certain variable names, e.g., age(d=14).  See the description of “option 
deviations”. 
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ASCII data files  = filename [filename ... filename]; 

The “ASCII data file” statement is not optional.  It specifies the name and 
location of the ASCII input file(s).  Single or double quotes are optional.  However, if the 
pathname or filename contains blank spaces, the entire name must be enclosed by quotes. 

Input data may be spread over multiple ASCII files.  The “ASCII data files” 
statement lists these files.  Their order is irrelevant, unless no ID file is specified.  In that 
case, the first ASCII data file must contain all unique IDs.  Also see the optional “id 
file” statement, next. 

id file = filename; 

There may be multiple ASCII input data files, each providing information on a piece 
of the data or model.  For example, suppose you are interested in jointly modeling 
mortality, divorce, and income.  You could put all corresponding data into one ASCII 
file, or you could organize your data such that one ASCII file contains data on mortality 
spells, another on divorce spells, and yet another on income records.  Raw2aml needs to 
merge data from the three files so that all information related to one observation (person, 
in this case) is stored together.  Each data structure record therefore needs to have an ID 
that is common to all records relating to one observation.  IDs may be any integer value, 
including negative and zero. 

The ID file is a master file that contains all IDs, and nothing else.  Each ID needs to 
be on a separate line.  Raw2aml reads in an ID from this ID file.  It then reads in a record 
from the first ASCII file and checks whether the ID matches.  If it does, this record is 
stored and becomes part of the current observation; raw2aml will then attempt the next 
record of the same ASCII file, until an ID does not match anymore.  It then moves on to 
the second ASCII file and attempts to read all consecutive records that match the current 
ID.  It then goes to the third ASCII file, et cetera.  When all ASCII files have been read, 
the observation is complete and the next ID will be read from the ID file.  It may be that 
an ID from the ID file cannot be matched to any ASCII file; it is then simply ignored.  
However, if an ID from an ASCII file does not appear in the ID file, an error message is 
generated.  The number of observations in the output file is equal to the number of IDs 
that could be matched to at least one data structured. 

! If one of the ASCII files contains a record with an ID that does not appear in 
the ID file (or first ASCII file, if no ID file is specified), then this record 
cannot be matched to any observation.  When raw2aml has completed reading 
the ID file (or first ASCII file), it checks that all other ASCII files have been 
read entirely.  If this is not the case, raw2aml will abort with an error 
message. 
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Consider again the example of three ASCII files with data on individuals’ mortality 
spells, divorce spells and income records.  If the three ASCII files are specified in that 
order (ascii data files = filename ... filename), there will be no problem, 
because every person must have mortality spell data.  However, if the divorce spell file is 
listed first, raw2aml will not find the IDs of individuals that were never married.  It will 
thus not read in those individuals’ mortality or income data, and issue an error message. 

If there is only one ASCII file, there is no need for an ID file.  Even if there are 
multiple ASCII files, no ID file may be needed, provided that all IDs appear in the ASCII 
file that is listed first.  In other words, if the control file does not specify an ID file, the 
first ASCII file will serve as ID file.  The program will read in all consecutive records 
from the first ASCII file with the same ID, and then reads as many records from other 
ASCII files that can be matched to the same ID.  This requires that the first ASCII file 
contains all IDs, just like the ID file must contain all IDs.  

Strictly speaking, ID files and ASCII data files need not be sorted by increasing ID.  
However, the ID file and ASCII files must be sorted in the same ID order.  Also, all 
identical IDs must appear in consecutive records.  For example, the IDs of records may 
appear as 2 5 5 5 8 8 3 3, in which case there are four observations.  The sequence  2 3 5 
8 8 5 3 5 would be interpreted as seven observations.  Raw2aml issues a warning if IDs 
are not sorted in increasing order (which is OK), but does not keep track of non-
contiguous duplicate IDs (which is not OK).  We recommend that you sort your data by 
ID, so that the ID and ASCII files are also sorted. 

option output data file = filename [(replace)]; 

This statement optionally specifies the output data set.  By default, raw2aml derives 
the name of the output data file from the control file by substituting extension “.dat” for 
“.r2a”.  The user may override this default by specifying the “option output data 
file” option in the control file or by the “-o” option on the command line.  The latter 
has highest priority; see Chapter 8.   

If the output data file already exists, it will not be overwritten unless “(replace)” 
is also specified.  The default may be explicitly stated, if you like, by “(replace=no)”. 

If filename is specified without extension, raw2aml adds extension “.dat”.  If the 
user specifies any extension, the name is taken as-is.  (aML also assumes default 
extension “.dat”; it need not be specified in aML control files.) 

Raw2aml will create a data summary file along with the output data set.  Raw2aml 
derives its name from the output data file name by substituting extension “.sum” for 
“.dat”.  If the output data file name does not have extension “.dat”, extension “.sum” 
is appended to its name.  Summary files provide information on the maximum number of 
data structure records (level 2 branches) in any one observation, the maximum number of 
level 3 subbranches in any one level 2 branch, et cetera, as well as summary statistics 
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(mean, standard deviation, minimum, maximum) on all variables.  Always check that the 
number of observations is equal to what was expected and check the summary statistics 
on variables. 
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9.2. Control over Data and Data Structures 
The second part of the raw2aml control file specifies how the data are organized, including 

the number of levels and variable names and whether they are distinguished into so-called data 
structures.  The syntax depends on the complexity of the data, particularly the number of levels 
and the organization of data into data structures.  aML supports multilevel models, and the second 
part of the raw2aml control file lists the variables at all levels.  aML also supports multiprocess 
models.  It is often convenient to organize one’s data in so-called data structures, particularly 
when different processes involve different variable lists.   

! Definition:  Data Structure 

A data structure is a subset of variables that are or need to be distinguished from other 
subsets of variables.   

The concept of a data structure may be best illustrated by some examples.  Suppose one is 
interested in analyzing children’s educational attainment, joint with parental wage income.  In the 
data, level 1 may correspond to a family and level 2 to a person (father, mother, children).  (Note 
that level 1, the highest level, corresponds to the greatest level of aggregation, with lower levels 
corresponding to disaggregated, repeating data.)  We may model children’s educational attainment 
as a schooling progression model, with a probit for the completion f each grade.  Level 3 for 
children may then denote grade levels.  Level 3 for parents may correspond to jobs, with level 4 
containing annual wage reports.  With such asymmetric data, it makes no sense to include the 
same variables at all levels.  Instead, one would define one 4-level data structure with parents, 
their jobs, and wages, and another 3-level data structure with children and their grade levels.  The 
data structures are different in their number of levels and their variable lists. 

You may also define data structures for no more compelling reason than convenience.  For 
example, suppose you wish to estimate a model separately for men and women.  The data fit 
perfectly well into a single data structure, because there are no differences in levels or variable 
lists.  (The model statements will need a keep or drop statement so that they apply to only men or 
only women.)  However, if you find it convenient, you may assign men to one and women to 
another data structure, and specify models in aML accordingly. 

The general syntax for the second part of the raw2aml control file is: 

[level 1] variables = varlist; 
 
[data structure = n;] 
   [level 2 variables = varlist;] 
   [level 3 variables [(nb=n)] = varlist;] 
   [level 4 variables [(nb=n)] = varlist;] 
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   <et cetera> 

Indeed, most statements are optional in the sense that they need not always appear.  Depending on 
the complexity of the data, however, some statements are mandatory.  We illustrate the syntax by 
increasing data complexity: (1) single level, single data structure; (2) multiple levels, one data 
structure; and (3) multiple levels, multiple data structures.  We start with the simplest case. 

9.2.1. Single Level, Single Data Structure 

[level 1] variables = varlist; 

The only statement that is needed provides the list of variable names.  You may explicitly 
state that this is a list of level 1 variables (level 1 var = varlist), or, since there is no room 
for confusion, omit the level 1 specification (var = varlist).  The variable list, varlist, is 
simply a list of variable names.   

! Variable names may be up to eight characters in length, must begin with an alpha 
character (a-z, A-Z), and may only contain alpha characters, numeric characters, and 
underscores (“_”).  Variable names are case-sensitive, just like all other user-defined 
names. 

You may assign any names to your variables.  Indeed, there need not be any relationship to 
the names of the variables in your data processing package (SAS, Stata, SPSS, or other).  
However, we recommend that you assign intuitive names that are similar to the names in your data 
processing package, so that the potential for confusion is minimal.   

If desired, raw2aml transforms one or more variables into deviations from their mean or from 
any other value. There are four ways to achieve this (also see “option deviations”, page 
225.) 

• If “option deviations=yes” is specified (page 225), all data variables are transformed in 
deviations from their mean.  By default, the mean over all data structures in which a variable 
appears is deducted.  “Option crossmeans=no” (page 226), causes raw2aml to deduct the 
variable’s mean as calculated within data structures. 

• varname(d) deducts the mean of varname from the variable before writing it out to the 
aML-formatted output file, regardless of the “deviations” option.  The mean over all data 
structures is deducted, unless “option crossmeans=no” is specified.  

• varname(a) retains the absolute value of varname, regardless of the “deviations” 
option.   
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• varname(d=x), where x is a real number, causes raw2aml to deduct x from varname.  For 
example, age(d=14) will be converted into age minus 14, regardless of whether the 
“deviations” option is specified.  

Transforming variables into deviations from their mean is sometimes helpful to ensure 
smooth search paths during maximum likelihood model optimization in aML.  This mostly applies 
to explanatory covariates and continuous outcome variables.  Do not take deviations of qualitative 
outcome variables, as their transformed values would be meaningless!  More generally, refrain 
from transforming variables into deviations from their mean unless you are very experienced in 
maximum likelihood search procedures. 

9.2.2. Multiple Levels, Single Data Structure 

level 1 variables = varlist; 
level 2 variables = varlist; 
level 3 variables [(nb=n)] = varlist; 
level 4 variables [(nb=n)] = varlist; 
<et cetera> 

The syntax for data with multiple levels tells raw2aml how many levels to expect, and what 
the names of variables at each level are.  In addition, the optional [nb=n] specifications tell 
raw2aml how many subbranches to expect at levels 3 and lower.  This option is only relevant for 
ASCII data that are written out in “rectangular” format, as explained in Chapter 10.   

It is worthwhile restating aML’s numbering of levels here: 

! aML uses the convention that data at the observation level, i.e., at the highest level of 
aggregation, are level 1 data.  Levels 2 and lower are for disaggregated data for which 
multiple measures are available. 

For example, in an analysis of student test scores, school-level variables (location, private/public) 
may be level 1 variables; student-level variables (sex, birth year) are level 2 variables; academic 
year-level variables (grade, pass/retain) are level 3 variables; and test-level variables (subject area, 
score) are level 4 variables.  Note that some other multilevel software packages use the reverse 
numbering scheme.  The choice has no substantive consequences.  In fact, you never use level 
numbers in the model specification stage, just variable names. 
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9.2.3. Multiple Levels, Multiple Data Structures 

level 1 variables = varlist; 
 
data structure = n; 
   level 2 variables = varlist; 
   level 3 variables [(nb=n)] = varlist; 
   level 4 variables [(nb=n)] = varlist; 
   <et cetera> 
 
data structure = n; 
   level 2 variables = varlist; 
   level 3 variables [(nb=n)] = varlist; 
   level 4 variables [(nb=n)] = varlist; 
   <et cetera> 
 
data structure = n; 
<et cetera> 

For data with multiple data structures, you need to tell raw2aml how to distinguish records 
from the various data structures.  This is done by assigning a unique identifier to each data 
structure (data structure=n).  These data structure numbers must be strictly positive integers.  
For specification of variable lists at each level, the syntax is very similar to the case with just a 
single data structure.  Note that level 1 variables are shared by all data structures.  This is only 
logical: level 1 is the highest level and contains observation-specific information.  By definition, 
there is only one such set of information.  One might thus say that data structures are defined at 
level 2, i.e., all data structures share the same level 1 variables and may differ only at level 2 and 
lower. 
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10. ASCII Input Data 

The data that raw2aml converts are stored in ASCII input files.  You create these files using 
your favorite data management package (SAS, Stata, SPSS, or other).  This chapter documents 
how the ASCII input data files need to be structured.  In other words, what is the sequence in 
which IDs, data structure numbers, other control variables, and data variables are written out to 
ASCII data files? 

The ASCII data format depends on the number of levels in the data, on whether subsets of 
variables are distinguished into multiple data structures, and on whether the data are written in 
“rectangular” or “compressed” format.  The data must be structured as follows: 

id [struc] [nb] 
    x1 
   [x2] 
   [x3] 
   [x4] 
   <et cetera> 

where id is the observation’s ID; struc is an optional data structure number; nb denotes one or 
more numbers of subbranches; x1 is a vector of level 1 variables; x2 is a vector of level 2 
variables; x3 denotes one or more vectors of level 3 variables; x4 denotes one or more vectors of 
level 4 variables; et cetera.  The following sections document the sequence of ASCII input files in 
increasing order of data complexity: 

page 
10.1. Single Level, Single Data Structure ..........................................................................235 
10.2. Two Levels, Single Data Structure............................................................................237 
10.3. Three Levels, Single Data Structure..........................................................................239 
10.4. Four or More Levels, Single Data Structure..............................................................242 
10.5. An Common Alternative: Collapse All Levels to Level 2.........................................245 
10.6. Multiple Levels, Multiple Data Structures ................................................................248 
10.7. Rectangular Data .......................................................................................................249 
10.8. Missing Values and Character Variables...................................................................254 
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10.1. Single Level, Single Data Structure 
Data with a single level and no distinct data structures are very straightforward.  Just write out 

an observation ID and the list of variables.  None of the optional items applies, so that the data 
must be structured as follows: 

id x1 

Note that x1 is shorthand for the vector of level 1 variables, i.e., it represents potentially many 
variables.  The only thing that requires a little attention is the ID variable.  With single-level data, 
you might think that raw2aml does not need to pull records together into observations, and thus 
does not need an ID.  To keep the requirements consistent with more complex data, though, 
raw2aml does require an ID preceding every record.  If your data do not already contain an ID, 
you will need to create one.  Setting the ID equal to the observation number will do just fine. 

The data may span multiple lines.  From the control file, raw2aml knows how many variables 
to read for each observation, and it will continue reading as many lines per observation as needed.  
However, each observation must start on a new line. 

! Data from multiple observations must be on separate physical lines in ASCII input 
data.  In other words, IDs must always be the first variable on a line. 

To further clarify this, suppose your data contain just three variables, age, sex, and income, 
plus an ID variable, id.  The first three observations in your data are: 

Observation id age sex income
1 1 25 1 20000 
2 2 54 2 45000 
3 3 37 2 50000 

The raw2aml control file reads as follows: 

ASCII input file = filename; 
var = age sex income; 

In the ASCII file that you create, the ID variable must be the first variable on a line.  For example: 

1 25 1 20000 
2 54 2 45000 
3 37 2 50000 
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! In the raw2aml control file you must not list the ID variable.  Only data variables are 
listed in the raw2aml control file.  Control variables, such as ID variables, data 
structure numbers, and numbers of subbranches, discussed below, are not specified.  
Raw2aml knows they should be there. 

The variables pertaining to a particular ID may wrap over multiple lines.  Furthermore, 
variables may be separated by one or more spaces, tabs, or commas.28  For example: 

1   25 
1 20000 
2 
54 
2 
45000 
   3,37,2 
    50000 

It is not immediately obvious to the human eye which numbers belong to which ID, but raw2aml 
knows from the control file to expect an ID plus three variables. 

! 
Data fields in ASCII files may be delimited by spaces, commas, or tab characters.   
 
Data fields that belong to one logical record may wrap over multiple lines (multiple 
physical records), provided that the data structure number (if any) is on the same line 
as the ID. 
 
A new logical record must always start on a new line, i.e., IDs must always be the first 
number on a line. 

 

                                                           
28 If you are using Stata to prepare data and create ASCII files, you may want to specify the “comma” 

option to the “outfile” command.  This results in smaller-sized ASCII data.  You may also want to specify 
the “wide” option which prevents wrapping over multiple lines.  The latter is for convenience only, in case 
you wish to visually inspect the ASCII file. 
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10.2. Two Levels, Single Data Structure 
The general order for data with two levels without distinct data structures is: 

id x1 x2 

Note that x1 and x2 represent vectors of level 1 and level 2 variables, respectively.  Each level 
2 “branch” is written out to a separate ASCII record.  For example, suppose your data contain 
individuals’ annual earnings for multiple years.  You have data on the person’s sex and education 
and, or multiple years, earnings amount, age, and 5-category health indicator.  The person-specific 
(level 1) variables are sex and educ; year-specific (level 2) variables are earnings, age, and 
health.  For the first person you have three years of data, for the second person one year, and for 
the third person four years.  Each year represents a level 2 “branch.”  Their values are as follows. 

id sex educ earnings age health 
   21000 32 1 

1 2 12 22000 33 1 
   25000 34 2 

2 1 16 43000 55 3 
   14000 23 3 

3 1 10 14500 24 2 
   15200 25 4 
   16000 26 5 

The raw2aml control file should read as follows: 

ASCII input file = filename; 
level 1 var = sex educ; 
level 2 var = earnings age health; 

Your ASCII data should look as follows: 

1 2 12 21000 32 1 
1 2 12 22000 33 1 
1 2 12 25000 34 2 
2 1 16 43000 55 3 
3 1 10 14000 23 3 
3 1 10 14500 24 2 
3 1 10 15200 25 4 
3 1 10 16000 26 5 

Note that there is a record for every level 2 branch.  IDs and level 1 variables are repeated as 
many times as there are level 2 branches.  The first three records have the same ID, so raw2aml 
groups them into one observation.  In the process, it checks that the level 1 variables have the 
same values in each record and generates an error message if this is not the case.  The output 
(.dat) data set removes the duplication and stores only one set of level 1 variables. 
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The above translates into the following rule. 

! ASCII data must contain one level 2 branch per record. 

In following sections, the fuller meaning of this rule will become clear. 
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10.3. Three Levels, Single Data Structure 
This section documents the order in which you need to write out data with three levels and a 

single data structure.  You should read and understand the preceding sections first.  We assume in 
this section that the data are “compressed,” as opposed to “rectangular.”  Don’t worry if you don’t 
know the difference, as the compressed format is the most intuitive and commonly used format.  
Rectangular data are discussed starting on page 249. 

The general order for data with three levels without distinct data structures is: 

id nb 
    x1 
    x2 
    x3 

Before illustrating this data order, consider an alternative.  For data with three levels, one could 
write an ASCII record for every level 3 branch, thereby repeating level 1 and level 2 variables as 
often as needed.  Essentially, this would collapse level 3 onto level 2.  Put differently, data with 
three conceptual levels would be written out with two technical levels.  This is perfectly fine and 
often more convenient than writing out data with three technical levels.  See Sections 3.4 and 10.5. 

Raw2aml requires each ASCII record to correspond to a level 2 branch, and contain all lower 
level variables.  Trouble is that some level 2 branches have more level 3 branches than others, i.e., 
that the data may be unbalanced.  For example, if level 1 corresponds to a school, level 2 to a 
student, and level 3 to a grade level, then some students may attend more years at the school than 
others.  You need to tell raw2aml how many level 3 branches (grades) to read in for every level 2 
branch (student).  This is done by creating a variable representing the number of level 3 branches.  
That variable, a raw2aml “control variable,” is represented above as “nb”.  For data with three 
levels, it is a scalar variable; for data with more levels, nb is a vector, as explained in the next 
subsection. 

Consider the example of a school progression model.  We have data on schools (level 1), 
multiple students (level 2) in schools, and grade levels (level 3) for each student.  The unit of 
observation in our (SAS, Stata, SPSS) data set is a student.  Level 1 variables are id (school ID), 
urban (located in urban area?) and private (private school?); level 2 variables are students’ sex 
and byear (year of birth); level 3 variables grade1-grade4 (grade level) and pass1-pass4 (did 
student pass this year?).  Note that we list four grade level and pass variables.  This is because the 
unit of observation in our data is the student (level 2 branch), and there are as many as four grade 
levels (level 3 branches) per student.  However, not all students were in school all four years.  
Some dropped out or transferred, while others transferred in at an advanced level.  We derive 
another level 2 variable, numyears, equal to the number of years that the student spent at this 
school.  The raw2aml control file is: 
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ASCII input file = filename; 
level 1 var = urban private; 
level 2 var = sex age; 
level 3 var = grade pass; 

Note that there is only one grade and one pass variable, rather than (up to) four in your data 
set.  Raw2aml and aML are aware of the nested level structure of the data, and need only one 
name for up to four variables.  Suppose the first two schools in your data have the following 
values: 

id urban private sex byear numyears grade pass 
   1 1980 4 9 10 11 12 1 1 1 1 

1 0 1 0 1979 3 9 10 11 . 1 1 0 . 
   0 1981 3 10 11 12 . 1 1 1 . 
   1 1978 2 11 12 . . 1 0 . . 

2 1 0 1 1976 4 9 10 11 12 1 1 1 0 
   1 1978 1 9 . . . 0 . . . 
   0 1980 3 9 10 11 . 1 1 1 . 

Note that variable numyears indicates how many years the student attended the school, and 
thus the number of relevant level 3 variables.  It is the “nb” in the required variable order.  The 
ASCII data should be as follows: 

1 0 1 1 1980 4 9 1 10 1 11 1 12 1 
1 0 1 0 1979 3 9 1 10 1 11 0 
1 0 1 0 1981 3 10 1 11 1 12 1 
2 1 0 1 1978 2 11 1 12 0 
2 1 0 1 1976 4 9 1 10 1 11 1 12 0 
2 1 0 1 1978 1 9 0 
2 1 0 0 1980 3 9 1 10 1 11 1 

Variables id and numyears are so-called control variables.  The control variables are written 
out first, followed by all data variables.  Do not specify control variables in the raw2aml control 
file!  Raw2aml expects them to be in the data. 

Note carefully that level 3 variables are in the following order: grade1 pass1 grade2 
pass2 grade3 pass3 grade4 pass4, not grade1-grade4 pass1-pass4!   

! ASCII records that contain multiple sets of repeating variables, such as numyears sets 
of level 3 variables grade and pass, should first list all variables of the first branch, 
then all variables of the second branch, et cetera. 
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Also note that the ASCII records only contain the relevant level 3 variables, not the variables 
beyond numyears branches, i.e., not the irrelevant (missing) values.  In SAS this is easily 
accomplished by looping over relevant branches:29 

  1 data _null_; 
  2    set yourdata; 
  3    array grade(4)  grade1-grade4;  /* level 3 variable */ 
  4    array pass(4)   pass1-pass4;    /* level 3 variable */ 
  5    file ’yourname.raw’;  /* ASCII data file */ 
  6    put id numyears; 
  7    put urban private;    /* level 1 variables */ 
  8    put sex byear;        /* level 2 variables */ 
  9    do i=1 to numyears; 
 10       put grade(i) pass(i);  /* level 3 variables */ 
 11    end; 

Other data preparation packages, such as Stata, do not allow observation-specific loops.  It 
may thus be very tedious to write out “compressed” ASCII data as above, with often fewer than 
four sets of level 3 variables.  Instead, you may always write out four sets of level 3 variables; see 
the section on “rectangular” data on page 249. 

! ASCII data must contain one level 2 branch per record. 

We repeat this rule, because its meaning may have become clearer now.  Each ASCII record 
contains all information pertaining to a level 2 branch, including all lower level variables. 

                                                           
29 The resulting ASCII data differ from those illustrated above in that each ASCII record wraps over 

multiple lines: one for id and numyears; one for urban and private; one for sex and byear; and 
numyears lines for grade and pass.  As explained earlier, raw2aml reads as many lines as needed. 
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10.4. Four or More Levels, Single Data Structure 
This section documents the order in which you need to write out data with four or more levels 

and a single data structure.  You should read and understand the preceding sections first.   

As stated before, it is rarely necessary to create data with four or more levels.  It is typically 
more convenient to collapse levels such that the lowest (most disaggregated) level becomes level 
2.  Variables at all levels in between are then duplicated in the resulting data, but the resulting 
savings in programmer effort probably far outweigh additional computing costs.  As a general 
rule, convert your data such that the unit of observation in your (SAS, Stata, SPSS) data set 
becomes level 2.  See Sections 3.4 and 10.5.   

There is no hard limit on the number of levels in aML.  The general order for data with four or 
more levels without distinct data structures is: 

id nb 
    x1 
    x2 
    x3 
    x4 
   [x5] 
   <et cetera> 

As before, id and nb are control variables; all others are data variables.  Variable id is a 
scalar.  In data with three levels, nb is also a scalar (indicating the number of level 3 branches for 
each ASCII record).  The situation becomes more complicated with four or more levels.  In 
addition to telling raw2aml how many level 3 branches each level 2 branch (or ASCII record) 
contains, you also need to tell it, for every level 3 branch, how many level 4 branches there are.  
The “nb” above represents all such control variables jointly, and is thus a vector of non-negative 
integers.  With five levels, you need to additionally specify the number of level 5 branches within 
each level 4 branch, et cetera.  This information needs to be in the data, not the control file, 
because the data may be unbalanced, i.e., some branches contain more subbranches than others.   

! ASCII data must contain one level 2 branch per record. 

We repeat this rule, as it applies throughout.  Consider again the schooling example, and 
suppose the data contain data on up to twelve tests (level 4) for every year in school (level 3) of 
every student (level 2).  The variables reflect, say, area (subject area) and score (test score).  
There are up to four years in school for every student, so four sets of level 3 variables (grade1-
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grade4 and pass1-pass4).  Similarly, there are up to twelve tests per school year, so 4*12=48 
sets of level 4 variables (area01-area48 and score01-score48).  ASCII data must contain one 
level 2 branch per record, so all information pertaining to one student (level 2 branch) is written 
out in one sweep, i.e., all level 1, 2, 3, and 4 variables.  (Yes, including the student’s level 1 school 
variables, which is duplicative since they are written out on the records of all students of a school.  
It is a small price to pay for simplicity, particularly in writing your SAS/Stata/SPSS code.) 

The raw2aml control file should contain: 

ASCII input file = filename; 
level 1 var = urban private; 
level 2 var = sex byear; 
level 3 var = grade pass; 
level 4 var = area score; 

As before, the unit of observation in your (SAS, Stata, SPSS) data is a student.  Variable 
numyears indicates the number of years this student attended the school (0<=numyears<=4).  For 
each year in school, the number of tests are denoted by ntest1 through ntest4, where 
0<=ntest(i)<=12.  In SAS, the data may be written out as follows: 

  1 data _null_; 
  2    set yourdata; 
  3    array grade(4)    grade1-grade4;    /* level 3 variable */ 
  4    array pass(4)     pass1-pass4;      /* level 3 variable */ 
  5    array area(4,12)  area01-area48;    /* level 4 variable */ 
  6    array score(4,12) score01-score48;  /* level 4 variable */ 
  7    file ’yourname.raw’;  /* ASCII data file */ 
  8    put id numyears; 
  9    do i=1,numyears; 
 10       put ntest(i);   /* number of level 4 branches */ 
 11    end; 
 12    put urban private;    /* level 1 variables */ 
 13    put sex byear;        /* level 2 variables */ 
 14    do i=1 to numyears; 
 15       put grade(i) pass(i);  /* level 3 variables */ 
 16    end; 
 17    do i=1 to numyears; 
 18       do j=1 to ntest(i); 
 19          put area(i,j) score(i,j);  /* level 4 variables */ 
 20       end; 
 21    end; 

Note lines 8-11 in which the control variables (ID and the numbers of branches) are written 
out.  Level 1 variables are written out on line 12, level 2 variables on line 13.  Lines 14-16 show 
numyears sets of level 3 variables, and lines 17-21 write out numyears sets of ntest(i) sets 
of level 4 variables.  The ID is only written out once, but recall that each SAS observation 
corresponds to a person, so that the same ID is written out multiple times for students of the same 
school.  In other words, all data are written out at level 2. 
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Note the numbers of subbranches which appear after the ID.  If there are three levels in your 
data, one integer is written out, namely the number of level 3 branches in the current (level 2) 
record.  Let’s denote the number of level 3 branches by n3.  If there are four levels in your data, 
1+n3 integers are written out: the first is the number of level 3 branches, and for every level 3 
branch, an additional integer is written for the number of level 4 branches in the corresponding 
level 3 branch.  Denote the number of level 4 branches in the i-th level 3 branch by n4i.  If there 
are five levels, 1 n3 n4ii 1

n3
+ +

=∑  integers are written: the number of level 3 branches, the numbers 
of level 4 branches in each level 3 branch, and the numbers of level 5 branches in each level 4 
branch.  Et cetera—raw2aml supports arbitrarily many levels. 

! ASCII data must contain one level 2 branch per record. 

We repeat this rule again, because it is so central to your data organization.  Make sure you 
fully understand its meaning. 
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10.5. An Common Alternative: Collapse All Levels to Level 2 
Raw2aml requires that ASCII input data are written out one level 2 branch per record.  This 

should pose no problem if the unit of observation in your (SAS, Stata, SPSS) data corresponds to a 
level 2 branch.  In the examples above, we therefore assumed that the unit of observation in your 
data was a student, rather than a school, year in school, or test.  What to do when the unit of 
observation in your data does not correspond to a conceptual level 2 branch? 

One approach is to convert your data.  In Stata, this may be done conveniently using the 
“reshape” command, and similar conversions are feasible in other data management packages.  
An attractive alternative is to leave the data as they are, and separate conceptual levels from 
technical levels.  For example, suppose each observation in your school test data set corresponds 
to a test.  Conceptually, the test is a level 4 branch.  However, it is perfectly fine to act as-if the 
test is a level 2 branch.  Technically, the test becomes a level 2 branch.  The school remains at 
level 1, but all other conceptual levels collapse into technical level 2.  The number of level 2 
branches will be the same as all conceptual level 4 branches (tests per school) combined. 

The raw2aml control file would be: 

ASCII input file = filename; 
level 1 var = urban private; 
level 2 var = sex byear grade pass area score; 

If the unit of observation in your data is a test, your data would contain fewer variables and 
more observations than if the unit of observation were a student.  Instead of variables grade1-
grade4, pass1-pass4, area01-area48, and score01-score48, your data would contain only 
four variables (grade, pass, area, and score).  In SAS, you would simply write out ASCII data 
as follows. 

  1 data _null_; 
  2    set yourdata; 
  3    file ’yourname.raw’;  /* ASCII data file */ 
  4    put id urban private sex byear grade pass area score; 

You may wonder how raw2aml and aML will know which variable is at what level.  The 
answer is that they will not know this.  The software will only be aware of the two levels that you 
specify.  However, there will be no difference whatsoever in the aML control file.  Models are 
specified using variable names only, without mention of level.  There are two important 
exceptions; see below. 

But then how will aML know which residuals’ dependencies?  For example, if your analysis 
of test scores includes school-specific, student-specific, year-specific, and test-specific residuals, 
how will aML know which tests belong to the same school, student, or year?  The answer follows 
from aML’s use of so-called draw variables (see Section 13.3.6).  Residual draws are controlled by 
integer-valued draw variables, not by level structures.  For example, the use of a student ID as 
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draw variable for the student-specific residual will tie all tests of a student together through their 
common student ID value. 

There are two cases in which aML does care about the levels at which variables are stored. 

1. In hazard models with time-varying covariates.  Time marks and time-varying covariates must 
be one level below the outcome variables (censor and duration variables).  For example, if the 
censor and duration variables are at level 2, time marks and time-varying covariates must be at 
level 3.  If you were to collapse conceptual level 3 to technical level 2, you would be repeating 
the censor and duration variables as often as there are intervals (level 3 branches) in hazard 
spells (level 2 branches).  aML would then think that the data contain many more outcomes 
than there really are.30 

2. In continuous models with ARMA(p,q) or CAR(1) residuals.  Both ARMA(p,q) and CAR(1) 
distributions are defined with time variables which specify how outcomes are spaced in time:  
“timevar [(within level n)] = varname” (Sections 13.2.7 and 13.2.8, respectively).  
The residuals are autocorrelated across outcomes within the specified level, and independent 
across branches of the specified level.  It is thus important to maintain conceptual levels in the 
data. 

The first exception draws attention to another case in which you should not collapse levels.  
Suppose you study grade promotion and test scores with data on schools (level 1), students (level 
2), years in school (level 3), and tests (level 4).  Grade promotions are outcomes at level 3; test 
scores at level 4.  If you were to collapse all tests to level 2, all level 2 and level 3 variables are 
duplicated.  In an analysis of grade promotion, aML would generate an equation for every 
outcome variable in the data, i.e., as many equations as there are tests in each year.  These 
equations are not independent, and you would be led to believe that the model parameters are 
estimated with more precision than they should be.  In short, duplicating explanatory variables is 
harmless, but don’t collapse levels if that implies that you are duplicating outcome variables. 

! Collapsing data levels implies that variables above the lowest (most disaggregated) 
level are duplicated.  For explanatory variables, this is harmless.  However, don’t 
collapse levels if there are outcome variables above the lowest level, as this would 
imply that more equations enter your model than there are independent outcomes. 

                                                           
30 If you absolutely must collapse time-varying covariates to level 2, you can do so and create a hazard 

spell for every interval.  Suppose there are five intervals in a non-censored hazard spell.  You may break this 
up into five short hazard spells: four censored and one non-censored spell.  This implies that you must 
replace the censor variable by one for all spells except the last, and replace all duration variables to reflect the 
short spells.  Also, you need to add the cumulative duration in prior spells to duration spline origin variables, 
so that the origin keeps referring to the correct point in absolute time.  Technically, there are no more time-
varying variables in this set-up. 
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Apart from these cases, why bother with complicated level constructs?  Well, there is indeed 
no compelling technical reason to do so.  Keeping conceptual levels consistent with technical 
levels may help you stay organized and keep an overview of your data (especially useful when 
repeating the analysis a few years later).  Another disadvantage of data with collapsed levels is 
that they take up more disk space.  In the example, all level 2 and level 3 variables are duplicated 
in both the ASCII and aML (.dat) data files.  However, the penalty in raw2aml and aML 
runtimes will typically be very small. 

As a general rule, you may be best off assigning (technical) level 2 to whatever (conceptual) 
level your unit of observation corresponds.  The time you will spend converting your data to 
preserve conceptual levels probably far exceeds the time lost due to longer runtimes.  Whichever 
way you structure your data will make no difference for model specification and estimation in 
aML; all is defined and specified using variable names, and aML doesn’t care at what level 
outcomes are repeated.  Also see Section 3.4. 
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10.6. Multiple Levels, Multiple Data Structures 
If your data are organized in data structures, you must indicate their numbers in the ASCII 

records.  The data structure number is inserted immediately following the ID.  It must be on the 
same line as the ID.  (All other variables may be separated by line feed and/or carriage return 
characters.)  All other variables are in the same order as in the single data structure case: 

id struc [nb] 
    x1 
    x2 
   [x3] 
   [x4] 
   <et cetera> 

Data structure numbers must be strictly positive integers. 

You may wonder why raw2aml requires that ASCII data must contain one level 2 branch per 
record.  Why not one level 1 branch per record (i.e., write out an entire observation to a single 
record), or one level 3 branch per record?  Recall that data structures apply to level 2 and lower 
only.  There can only be one set of values for variables at the most aggregate (observation) level, 
but at level 2 and lower different variable lists may apply.  It is only at level 2 and lower than data 
structures may be distinct.  This underlies the requirement of one level 2 branch per record.  It also 
tends to make the life of the programmer simpler.  If you like, however, you may write out one 
ASCII record for each level 3 (or higher) branch; see the previous section. 
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10.7. Rectangular Data 
The above discussion pertains to the so-called “compressed” data format.  However, some 

data preparation packages do not support the creation of ASCII files as described above.  In our 
sample data, there were up to four years in school per student and up to twelve tests per year.  For 
many students, however, fewer than four years of data may be available, and some grade levels 
may have fewer than twelve tests.  The remaining years and/or tests are irrelevant and will be 
missing (“.”) in the data.  Raw2aml never accepts missing values in the form of dots (“.”); see the 
next subsection.  Irrelevant values should therefore preferably not be written out to the ASCII 
data.  Our SAS sample code, above, looped over the actual number of years in school and the 
actual number of tests, and wrote out only relevant values.  We call such data “compressed,” 
because they exclude irrelevant values.  Writing out compressed data is not always easy to do in 
some other data preparation packages, however.  Also see Section 3.3. 

Raw2aml offers the option of writing out some maximum number of branches at every level.  
This type of data are called “rectangular.”  You would write out relevant variables first, and pad 
the record with irrelevant variables such that the total number of branches equals the maximum 
number of relevant branches in the data.  In the ASCII data file, the number of relevant branches 
for each record is written out immediately following the ID and the optional data structure 
number, just like in the examples above.  The maximum number of level 3 and lower branches is 
specified in the control file.  Raw2aml knows how many branches are relevant from the ASCII 
record, and knows how many branches to read in total from the raw2aml control file.  It is a very 
good idea to assign a special number (preferably -99) to all irrelevant data values.  Raw2aml reads 
the relevant data and issues a warning if any value is ever equal to the special number; it also reads 
the irrelevant data and aborts with an error message if any of the irrelevant values is ever not equal 
to the special number.  The special number may be defined by 

option irrelevance check = {yes | no | x}; 

By default (yes), the special number is -99; another number may be selected by specifying it on 
the right-hand-side; specifying “no” turns off the relevance/irrelevance checks.  Also see page 
224.  Consider again the schooling example with up to four years in school (level 3 branches) per 
student and up to twelve tests (level 4 branches) per year in school.  (The maximum number of 
students per school does not matter, because each ASCII record corresponds to one student; the 
distinction between compressed and rectangular data matters only at level 3 and lower.)  Suppose 
the unit of observation in your (Stata) data set is a person.  Ignore for now everything at level 4; 
we first illustrate how to create a rectangular data file with three levels.  The raw2aml control file 
contains the following variable specification:   

ASCII input file = filename; 
level 1 var = urban private; 
level 2 var = sex byear; 
level 3 var (nb=4) = grade pass; 
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Note the “nb=4” which specifies that the number of level 3 branches under each level 2 branch 
(i.e., on every ASCII record) is always four.  The data may be written out as follows.31 

/* All irrelevant values are missing; set them to -99 */ 
mvencode _all, mv(-99) 
#delimit ; 
outfile id numyears urban private sex byear 
   grade1 pass1 
   grade2 pass2 
   grade3 pass3 
   grade4 pass4 
   using yourname.raw, comma wide; 

Note that the second variable, numyears, tells raw2aml how many relevant years in school 
(level 3 branches) to read; from the control file it knows that the total number to read is always 
four.  Based on the data shown on page 240, the ASCII file will contain the following: 

1,0,1,1,1980,4,9,1,10,1,11,1,12,1 
1,0,1,0,1979,3,9,1,10,1,11,0,-99,-99 
1,0,1,0,1981,3,10,1,11,1,12,1,-99,-99 
2,1,0,1,1978,2,11,1,12,0,-99,-99,-99,-99 
2,1,0,1,1976,4,9,1,10,1,11,1,12,0 
2,1,0,1,1978,1,9,0,-99,-99,-99,-99,-99,-99 
2,1,0,0,1980,3,9,1,10,1,11,1,-99,-99 

Now introduce the fourth level with tests.  The raw2aml control file contains the following: 

ASCII input file = filename; 
level 1 var = urban private; 
level 2 var = sex byear; 
level 3 var (nb=4) = grade pass; 
level 4 var (nb=12) = area score; 

Note again the “nb=12” on the last line: there are always 12 sets of level 4 variables in the ASCII 
data, even though fewer may be relevant.  The data may be written as follows:  

/* First set all missing values to -99 */ 
mvencode _all, mv(-99) 
#delimit ; 
outfile id numyears urban private sex byear 
   grade1 pass1 

                                                           
31 Stata’s “#delimit ;” command sets the command delimiter to a semicolon, so that commands may 

wrap over multiple lines.  The “comma” option of the outfile statement causes the ASCII data to be comma-
delimited, resulting in far smaller file sizes than the default of multiple spaces.  The “wide” option prevents 
Stata from wrapping the lines; it sometimes helps when looking at ASCII data to find the cause of an error.  
Neither the “comma” nor the “wide” option is required. 
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   grade2 pass2 
   grade3 pass3 
   grade4 pass4 
   area01 score01 
   area02 score02 
         : 
   area48 score48 
   using yourname.raw, comma wide; 

Note that we write out 4*12=48 sets of level 4 variables.  Each of these sets may have both 
relevant and irrelevant (-99) variables.  Consider a student who attended the school for three years 
and took 10, 12, and 8 tests.  His area01-area10 are relevant and contain actual values; area11 
and area12 are equal to –99; area13-area24 are all relevant; area25-area32 are also 
relevant; area33-area36 are equal to –99; and area37-area48 are all equal to –99.  Similar for 
score01-score48. 

In summary, the table below defines the exact ASCII variable sequence for compressed data. 

Compressed Sequence of Variables in an ASCII Record 

description data type Definition 
id  1 integer Identification number for the record 
struc 1 integer Structure number (optional) 
n3 1 integer Number of level 3 branches (only for level 3 and lower 

data structures). 
(n4

n3)
i

i
b g,
,...,= 1  n3 integers Numbers of level 4 branches in each of the level 3 

branches (only for level 4 and lower data structures). 
((n5 ,

n4
n3)

i j
j i
i

b g
b g

,
,..., ),
,...,

=
=

1
1

 
n4n3 i

i b g=∑ 1
 integers Number of level 5 branches in each of the level 4 

branches for each level 3 branch (only for level 5 and 
lower data structures). 

Etc, for level 6 and 
lower 

  

(x1
nx1)

i
i
b g,
,...,= 1  nx1 reals All (nx1) level 1 variables. 

(x2
nx2)

i
i
b g,
,...,= 1  nx2 reals All (nx2) level 2 variables 

((x3
nx3
n3)

i j
j
i

, ,
,..., ),
,...,

b g
=
=

1
1

 

 

nx3× n3 reals All (nx3) level 3 variables in each of the n3 level 3 
branches, i.e., n3 series of nx3 variables.  First record 
all nx3 variables of the first level 3 branch, then all nx3
variables of the second level 3 branch, etc.  (Only for 
level 3 and lower data structures.). 
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description data type Definition 
(((x4

nx4),
n4
n3)

i j k
k
j i
i

, , ,
,...,
,..., ),
,...,

b g
b g

=
=
=

1
1
1

 
nx4 n4×

=∑i

n i
1

3 b g  
reals 

All (nx4) level 4 variables in each of the level 4 
branches for each level 3 branch, i.e., n4n3

i
i

=∑ 1 b g  series 

of nx4 variables.  First record all nx4 variables for the 
first level 4 branch of the first level 3 branch, then all 
nx4 variables for the second level 4 branch of the first 
level 3 branch, etc.  (Only for level 4 and lower data 
structures.) 

((((x5
nx5),
n5
n4
n3)

i j k l
l
k i j
j i
i

, , , ,
,...,
,..., , ),
,..., ),
,...,

b g
b g
b g

=
=
=
=

1
1
1
1

 

nx5
n5n4n3

×

== ∑∑ i j
j

i

i
,b gb g

11
 

reals 

All (nx5) level 5 variables in each of the level 5 
branches for each level 4-branch and each level 3 
branch, i.e., n5n4n3 i j

j

i

i
,b gb g

== ∑∑ 11
 series of nx5 variables.  

The loop over index l is executed most; the loop over i 
only once.  (Only for level 5 and lower data structures.) 

Etc, for level 6 and 
lower 

  

In the rectangular form, all records must have the same number of variables.  The structure 
and definitions are the same as for the compressed form, above.  The only difference is that 
records are padded with irrelevant values that are set to a special value, preferably -99.  The table 
below defines the structure of each ASCII record in rectangular form. 

Rectangular Sequence of Variables in an ASCII Record 

description data type Definition 
id  1 integer Identification number for the record 
struc 1 integer Structure number (optional) 
n3 1 integer Number of level 3 branches (only for level 3 and lower 

data structures). 
(n4

maxn3)
i

i
b g,
,...,= 1  maxn3 integers Numbers of level 4 branches in all level 3 branches, 

whether relevant or irrelevant (only for level 4 and 
lower data structures).  n3 relevant values; maxn3-n3
irrelevant values, set to -99. 

((n5 ,
maxn4
maxn3)

i j
j
i

b g,
,..., ),
,...,

=
=

1
1

 
maxn3× maxn4 
integers 

Number of level 5 branches in all level 4 branches in all 
level 3 branches, whether relevant or irrelevant.  (only 
for level 5 and lower data structures). 

Etc, for level 6 
and lower 

  

(x1
nx1)

i
i
b g,
,...,= 1  nx1 reals All (nx1) level 1 variables. 

(x2
nx2)

i
i
b g,
,...,= 1  nx2 reals All (nx2) level 2 variables 
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description data type Definition 
((x3

nx3
maxn3)

i j
j
i

, ,
,..., ),
,...,

b g
=
=

1
1

 
nx3× maxn3 reals All (nx3) level 3 variables in each of the maxn3 level 3 

branches, i.e., maxn3 series of nx3 variables.  First 
record all nx3 variables of the first level 3-branch, then 
all nx3 variables of the second level 3-branch, etc. (only 
for level 3 and lower data structures).  n3 sets of 
relevant variables and maxn3-n3 sets of irrelevant 
values, set to -99. 

(((x4
nx4),
maxn4
max3)

i j k
k
j
i

, , ,
,...,
,..., ),
,...,

b g
=
=
=

1
1
1

 

nx4× maxn4 
× maxn3 reals 

All (nx4) level 4 variables in each of the level 4 
branches for each level 3 branch, i.e., maxn4× maxn3
series of nx4 variables.  First record all nx4 variables 
for the first level 4 branch of the first level 3 branch, 
then all nx4 variables for the second level 4 branch of 
the first level 3 branch, etc.  Pad with -99 for irrelevant 
level 4 branches of the first level 3 branch.  The all nx4 
variables of the first level 4 branch of the second level 3 
branch, etc.  (only for level 4 and lower data structures).

((((x5
nx5),
maxn5
maxn4
maxn3)

i j k l
l
k
j
i

, , , ,
,...,
,..., ),
,..., ),
,...,

b g
=
=
=
=

1
1
1
1

 

nx5× maxn5×  
maxn4× maxn3 
reals 

All (nx5) level 5 variables in each of the level 5-
branches for each level 4-branch and each level 3-
branch, i.e., maxn5× maxn4× maxn3 sets of nx5
variables.  The loop over index l is executed most; the 
loop over i only once.  (only for level 5 and lower data 
structures). 

Etc, for level 6 
and lower 

  

Numeric values in the ASCII files must be separated by blanks, commas, or tab characters.  
The id must always be the first number on a line and the data structure number must appear on 
that same line.  All other numbers may span multiple lines.  In other words, all variables may also 
be separated by line feeds and/or carriage returns, except for the ID and data structure number, 
which must appear on the same line. 
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10.8. Missing Values and Character Variables 
Most third-party statistical packages internally reserve one or more special numerical values 

to represent the “missing value.”  Upon input and output, such missing values are typically 
represented by a period (“.”).  Raw2aml and aML do not support such missing values.  All 
numerical values must be legitimate numbers on the real line. 

This does not imply that you may not use aML if your data contain missing values.  It only 
implies that you need to resolve missing values before transforming your data into aML-format 
using raw2aml.  One method for resolving missing values is to impute them.  Another common 
method is to generate a separate indicator variable which flags whether the original variable is 
missing.  If the original variable is missing, the indicator variable is one; else, it is zero.  Now that 
there is a flag for missing values, missing values of the original variable may be set to some 
legitimate numerical value, such as zero or the mean over nonmissing values.  (The latter provides 
a test for whether the variable is missing randomly.)   

Before writing out ASCII data, make sure that all missing values are resolved.  If periods (“.”) 
inadvertently enter ASCII data, raw2aml will abort with an error message.  It will attempt to 
diagnose the problem and communicate its findings.  

In rectangular data, it is important to distinguish between missing and irrelevant values.  
Irrelevant values occur when a level 2 or lower branch has fewer subbranches than the maximum 
number in the data.  Irrelevant should be set to -99 before creating ASCII data files.  Raw2aml will 
recognize that they are irrelevant and discard them.  The aML-formatted data will only contain 
relevant values.  By contrast, missing values occur, for example, when a respondent is not able or 
willing to respond to a question.  These values must be resolved before creating ASCII data files. 

Finally, aML does not support character string variables with values such as “abc” or 
“yourname”.  Only numerical variables are supported.  If a character string inadvertently enters 
ASCII data, raw2aml will abort with an error message.  Note that values like “1.23E+02” 
(without the double quotes) are interpreted correctly as numerical, not string values. 
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11. Raw2aml Data Documentation File 

Raw2aml produces two output files:  a data file (with extension .dat) and a data 
documentation file (with extension .sum).  The data file is in binary format and should only be 
read by aML.  The data documentation file is a text file and you may read it using any text editor. 
This chapter interprets the raw2aml output file with summary statistics of the data set.  Raw2aml 
wrote its contents also to standard output, i.e., to the window from which raw2aml was run. 

11.1. General Output 
The data documentation file, also known as summary file, contains the following information. 

• Name of data file to which the documentation pertains, date of creation, and names of 
ASCII input files. 

• Number of observations, maximum numbers of branches per observation, maximum 
numbers of level n branches per level m branch, where m<n. 

• A frequency table of data structures. 

• Variable names, means, standard deviations, minima, and maxima, for all variables and 
for all data structures and levels.  In addition, if one or more variable names appear in 
multiple data structures, raw2aml reports summary statistics as computed across all data 
structures in which the variable(s) appear. 

• Notes and warnings, if any. 

Consider the following summary file: 

  1 Documentation for ‘path\filename.dat’ 
  2 Created on Sun Jul 25 21:43:04 1999 with raw2aml version n. 
  3 ID file: ‘path\id.raw’ 
  4 Ascii data sets: ‘path\file1.raw’ 
  5                  ‘path\file2.raw’ 
  6                  ‘path\file3.raw’ 
  7                  ‘path\file4.raw’ 
  8  
  9 Number of observations:    5825 
 10 Maximum number of level 2 branches in any observation:     25 
 11 Maximum number of level 3 branches in any observation:     96 
 12 Maximum number of level 3 branches in any level 2 branch:  42 
 13  
 14      STRUCTURE |      Freq.     Percent 
 15   -------------+------------------------ 
 16            100 |       7202       11.96 
 17            200 |       4860        8.07 
 18            300 |      10243       17.02 
 19            400 |       9426       15.66 
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 20            510 |      21326       35.43 
 21            520 |       7141       11.86 
 22   -------------+------------------------ 
 23          Total |      60198      100.00 
 24  
 25 ------------------------------------------------------------ 
 26  
 27 LEVEL 1 VARIABLES: 
 28 Variable      N       Mean    Std Dev        Min        Max 
 29 _id        5825   5798.123   3423.358        1.0    12558.0 
 30 var1       5825   .9781321   .7240252     0.1121     3.6698 
 31 var2       5825   .1460944   .4421697        0.0        7.0 (dev=mean) 
 et cetera 
 43  
 44 ------------------ DATA STRUCTURE 100 ---------------------- 
 45  
 46 LEVEL 2 VARIABLES: 
 47 Variable      N       Mean    Std Dev        Min        Max 
 48 var20      7202   0.324632   .4682697        0.0        1.0 (dev=.5388737) 
 49 var21      7202   2.869869   6.121001        0.0       24.4 (dev=12) 
 et cetera 
 74 var36      7202        0.0        0.0        0.0        0.0 
 75 var37      7202    99999.0        0.0    99999.0    99999.0 
 76  
 77 LEVEL 3 VARIABLES: 
 78 Variable      N       Mean    Std Dev        Min        Max 
 79 var40     88235   10.08367   4.763343      0.003     24.791 
 80 var41     88235   .0730662   .2602467        0.0        1.0 
 et cetera 
 88  
 89 ------------------ DATA STRUCTURE 200 ---------------------- 
 90  
 et cetera 
324  
325 ------------------------------------------------------------ 
326  
327 NOTE: there are 11 data variables without any variation. 
328  
329 NOTE: the following 64 variables appear in multiple data structures.  
330 Summary statistics across all data structures in which they appear: 
331  
332 Variable      N       Mean    Std Dev        Min        Max 
333 var20     31731   .5388737   .4984944        0.0        1.0 
334 var21     31731   8.327178   7.113525        0.0       24.4 
 et cetera 
397  
398 NOTE: there is variation in all data variables. 
399  
400 WARNING: there is at least one variable whose name appears at varying 
401 levels in multiple data structures.  One such variable is ‘var45’. 

The first section (lines 1-7) lists the name of the data file to which the summary file pertains, 
the date and time at which it was created, the ID file, and the ASCII input file(s).  To be precise: 
the date and time indicate the moment raw2aml started execution, not when it terminated. 
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Number of observations:    5825 
Maximum number of level 2 branches in any observation:     25 
Maximum number of level 3 branches in any observation:     96 
Maximum number of level 3 branches in any level 2 branch:  42 

The second section (lines 9-12) reports the number of observations, the numbers of branches 
within any one observation, and the number of branches within any one other branch.  In the 
example, there were 5,825 observations, i.e., 5,825 distinct IDs.  There are as many as 25 level 2 
branches per observation, as many as 96 level 3 branches per observation, and as many as 42 level 
3 branches per level 2 branch.  This enables you to check the integrity of the data.  If observations 
correspond to schools, level 2 to students, and level 3 to grade levels, would these figures make 
sense?  Are there indeed 5,825 schools in your sample?  Does one or more schools contribute 25 
students to the data?  Are there as many as 96 years enrolled per school?  Can it be that one or 
more student was enrolled for 42 years?  Probably not, and the information provided here should 
thus prompt you to revisit the way in which data are written out, and/or the raw2aml control file 
specification. 

If the data contain more than three levels, this section will report additional maximum 
numbers of branches per observation and per higher-level branch.  Note the symmetry of the 
information that is reported.  By definition, an observation is a level 1 branch, so raw2aml reports 
the maximum number of level n branches per level m branch, for all n>m.. 

The third section (lines 14-23) tabulates the number of data structures in your data.  Recall 
that data structures are defined  or distinguished at level 2, so the table also tells you the total 
number of level 2 branches in the data (here, 60,198).  Does this correspond to the number you 
expect? 

The fourth section (lines 44-325) reports summary statistics of all data variables, by data 
structure and level.  All data variables are summarized.  In addition, line 29 summarizes the ID 
variable.  You did not specify this variable in the raw2aml control file, but raw2aml makes it 
available in the data as-if it were a data variable.  It names the variable _id.  If you like, you may 
use it in aML model specifications. 

The summary statistics include the number of times the variable appears in the data (within 
data structure), its mean, standard deviation, minimum, and maximum value.  Note that the 
numbers of times level 2 variables appear correspond to the data structure frequency on lines 14-
23.  Level 3 variables appear more often, as there may be multiple level 3 branches for each level 
2 branch. 

The data documentation file indicates on the far right which, if any, variables are in deviations 
from their mean or from some other value.  (This information is not provided among the summary 
statistics as computed across all data structures combined; see below.)  Note line 31, which states 
“(dev=mean)”.  This indicates that the (.dat) data file contains variable var2 in deviations 
from its mean, i.e., in deviations from 0.324632.  This was achieved by specifying “var2(d)” in 
the raw2aml control file (page 225).  Line 48 states “(dev=.5388737)”.  Variable var20 was 
apparently transformed into deviations from 0.5388737.  This was achieved by specifying 
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“var20(d)” in the raw2aml control file.  However, var20’s mean as reported on line 48 is 
0.324632, not 0.5388737; by default, raw2aml deducts the cross-data structure mean.  As 
explained below, line 333 indicates that that mean is indeed 0.5388737.  Line 49 states 
“(dev=12)” indicating that the .dat file contains var21-12, rather than just var21.  This was 
achieved by specifying “var21(d=12)” in the raw2aml control file.   



11.2.  Notes, Warnings, and Error Messages 259 

 

R
ef

er
en

ce
 M

an
ua

l 

11.2. Notes, Warnings, and Error Messages 
Raw2aml issues notes to help the user determine whether the data have been converted 

correctly, and warnings when it finds patterns in the data that may be indicative of a user error.  In 
addition, it issues an error message when something is definitely wrong.  Notes and warnings do 
not affect execution of the program; error messages always abort execution.  This section 
documents notes and warnings; the very many error messages that are built into raw2aml are 
designed to be fully informative and self-evident. 

NOTE: there are n data variables without any variation 

Raw2aml computes summary statistics of all data variables.  If there are multiple 
data structures, these statistics are at first computed within data structure.  In other words, 
even if a variable appears in multiple data structures, summary statistics are at first 
computed for each data structure without regard to other data structures.  (Statistics 
pooling data structures are also computed and reported; see below.)  After raw2aml 
writes out summary statistics (such as on lines 44-325 in the sample documentation file), 
it checks whether all variables have variation.  If there are variables without variation 
(i.e., variables which always have the same value within a data structure), raw2aml writes 
out a note.   

Line 327 in the sample file draws attention to the fact that there are 11 variables 
without any variation.  Two of those variables appear on lines 74 and 75.  Note that their 
standard deviation is zero.  Data variables without variation do not have much 
informational content.  If there were only one data structure, the above note would thus 
be replaced by a warning.  Similarly, if there is no variation across all data structures 
combined, a warning is written out; see below. 

NOTE: there is variation in all data variables 

Complementary to the preceding note, this message confirms that there is variation 
in all data variables.  In the sample documentation file, this statement appears on line 
398, i.e., when all data structures are considered jointly.  The 11 variables that had been 
identified without any variation (line 327) apparently did take on multiple values across 
data structures. 

NOTE: the following n variables appear in multiple data structures  

Line 329 draws attention to the fact that 64 variables appear in multiple data 
structures, i.e., that the user assigned the same name at least twice.  It is not allowed to 
give the same name to two or more variables in the same data structure, but it is perfectly 
fine to use names multiple times across data structures.  Lines 44-325 reported summary 
statistics within data structures; lines 332-396 report summary statistics as computed 



260 11.2.  Notes, Warnings, and Error Messages 

 

R
ef

er
en

ce
 M

an
ua

l 

across all data structures in which a variable appears.  The latter section does not indicate 
whether any variables are in deviations from their mean or other value. 

NOTE: all variable names are unique 

The names of variables in any one data structure must be unique, but it is perfectly 
fine to assign the same name to variables in different data structures.  This note indicates 
that all names are unique, even across data structures.  It is the complement of the 
preceding note. 

NOTE: all irrelevant level 3+ variables are equal to -99 

This message applies to conversions of rectangular data only.  As discussed on pages 
224 and 249, it is a very good idea to set irrelevant variables equal to some special 
number, such as -99.  Raw2aml checks that all irrelevant values are indeed equal to -99 
(or whatever special number you chose in “option irrelevance check”).  This note 
indicates that all appears to be OK.  It supports that you correctly lined up your relevant 
and irrelevant values. 

NOTE: relevant level 3+ variables are never equal to -99 

This message applies to conversions of rectangular data only.  Complementary to the 
preceding note, it states that relevant data variables are never equal to -99 (or whatever 
special number you chose in “option irrelevance check”).  It supports that you 
correctly lined up your relevant and irrelevant values.   

Relevant variables may take on any value, including -99, but raw2aml’s check on 
what values are relevant and irrelevant is more powerful if the special value is never a 
legitimate value.  If relevant variables are ever equal to the special value, raw2aml issues 
a warning; see below. 

WARNING: there are n data variables without any variation 

This message draws attention to the fact that there are variables in your data without 
any variation, i.e., variables that always take on the same value.  Their standard deviation 
is zero.  Such variables have little or no informational content.  If they are used in 
regressions, they will be collinear with the intercept term, and their coefficient cannot be 
estimated. 

The warning should prompt you to check whether you wrote out your ASCII data 
correctly.  An alternative explanation is that the variables really do not have any 
variation, in which case you may want to check your (SAS, Stata, SPSS) data preparation 
logic. 
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WARNING: after computing summary statistics across all data structures 
in which each variable appears, there are still n data variables 
without any variation 

This message is similar to the preceding one, but is issued if there are multiple data 
structures, and some variables lack variation even across data structures. 

WARNING: there is at least one variable whose name appears at unequal 
levels in multiple data structures.  One such variable is ‘varname’. 

The names of variables in any one data structure must be unique, but it is perfectly 
fine to assign the same name to variables in different data structures.  It is also perfectly 
fine to use the same name for variables that are at, say, level 2 in one data structure and 
level 3 in another.  However, if data levels in raw2aml correspond to conceptual data 
levels, it does not often make sense to use the same name for variables at different levels.  
This message draws attention to duplicate names at unequal levels. 

WARNING: your very first variable is ‘varname’.  Note that the 
observation ID is assumed to be on every record in the first position; 
it should not be listed among the data variables, unless it really 
appears twice in the data. 

This warning hopes to prevent a very common error.  The very first variable on 
ASCII records is always the observation’s ID variable.  This is a control variable, not a 
data variable with substantive meaning.  Since it is a control variable, it should not be 
listed among (level 1) variables in your raw2aml control file.  However, many users 
explicitly list the ID variable.  Raw2aml will think that the number of level 1 variables is 
one more than it really is, and attempt to read in an extra variable for each record.  The 
result is that all variables are offset, i.e., different in your (SAS, Stata, SPP) data set and 
the .dat file.  In addition, raw2aml counts too few observations, because it reads one 
line too many for each record. 

To help prevent this error, raw2aml checks whether the first variable in your list of 
level 1 variables is ‘id’ or ‘ID’.  If that is the case, it ventures the above warning.  If you 
listed the ID variable under a different name, raw2aml may be unable to catch the error. 

WARNING: the IDs are not sorted in increasing order.  There is no 
reason why they should be, but it may be indicative of a failure to 
properly match various records into one observation.  Please check that 
the number of observations (n) is correct. 

This message is self-explanatory.  A very common cause of this message is a 
misspecification of the number of variables in the raw2aml control file.  If you list more 
variables than there really are in the data, raw2aml will read additional lines in an attempt 
to read the additional variables.  It will then interpret the first value on the next line as an 
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ID, whereas that variable may in fact be a data variable.  Similarly, if you list too few 
variables, raw2aml may not read enough lines per ASCII record.  The resulting number 
of observations will then be too low or too high, hence the last sentence of the warning. 

It is a good idea to always sort your IDs (in SAS, Stata, SPSS) in increasing order.  If 
this warning is issued, check that the number of observations corresponds to your 
expectation, and that the number of variables in your (SAS, Stata, SPSS) output statement 
corresponds to the number listed in the raw2aml control file. 

WARNING: n level 3+ variables are relevant but equal to -99. 

This message applies to conversions of rectangular data only.  As discussed on pages 
224 and 249, it is a very good idea to set irrelevant variables equal to some special 
number, such as -99.  In addition to checking that all irrelevant values are indeed equal to 
-99 (or whatever special number you chose in “option irrelevance check”), 
raw2aml checks whether any relevant value is ever equal to the special number.  While 
there is no formal objection against this, it weakens the data integrity test that raw2aml 
carries out.  If your data are rectangular, and some relevant values are truly equal to -99, 
we suggest that you set irrelevant values to some other special number (say, -99999) to 
which relevant variables are never equal.  Tell raw2aml to check that irrelevant values are 
always equal to that special number, and that relevant values are never equal to that 
special number, by specifying “option irrelevance check = -99999”.  Also see 
page 224. 
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12. aML Command Line Options 

aML features many options.  Some may be specified on the command line, i.e., in the DOS or 
UNIX window, when you invoke the aML executable program; some may be specified in the aML 
control file, i.e., the .aml file; and some may be specified either way.  This chapter documents 
command line options; Chapter 13 deals with control file options.   

aML may be invoked with the following command line options: 

aml [-h] [-l] [-c] [-r] [-o file.dat] [-m macrofile] file.aml 

Command line options may appear in any order.  The remainder of this chapter explains how each 
option alters aML’s default behavior. 

Option -h 

Option -h (“help”) provides limited on-line help.  It lists all supported command line 
options and concisely explains their use. 

Option -l 

Option -l (letter “l”, as in “license,” not number “1” as in “one”) is used for 
displaying and updating license information.  The very first time you run aML, you 
should specify this option.  aML will ask for your serial number and authorization code 
and create a license file.  Each subsequent time that you run aML, it will check that you 
have a valid license file.  For more information see page 5. 

Option -c 

Option -c (“course”) makes aML behave as-if you have a course license, regardless 
of your actual license.  A course license is intended for use by students who take a 
statistics course which requires hands-on experience with aML.  It powers down aML’s 
capabilities.  Specifically, it limits the number of data observations, the number of model 
parameters, and the number of covariates.  The -c option is intended for course 
instructors who themselves have an unrestricted aML license.  The option enables the 
course instructor to verify that students will be able to carry out the assignments by 
temporarily powering down his or her own version of aML. 

Option -r 

By default, aML checks whether the specified output file with estimation results 
(.out file) already exists on disk.  If it indeed already exists, it asks the user for 
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permission to overwrite.  With option -r (“replace”), aML will overwrite the output data 
file without confirming that this is OK. 

Option -o file.out 

Option -o (“output”) specifies the output file with estimation results.  By default, 
output is written to a disk file with the same name as the control file, but with extension 
“.out” instead of “.aml”.  For example, if the control file is “abcdef.aml”, the output 
file will be “abcdef.out”.  (If the control file does not have extension “.aml”, the 
output file name is derived by appending “.out” to its name.  For example, control file 
“abcdef.ctl” results in “abcdef.ctl.out”; control file “abcdef” results in 
“abcdef.out”.)  This default behavior may be changed by using the “-o” option and 
explicitly specifying the name of the output file. 

We strongly recommend that you follow our convention of naming output data files 
with extension .out.  It greatly helps in keeping your files organized. 

Option -m macrofile 

aML control files may contain user comments which aML should ignore (Section 
16.1).  This is implemented through a control file pre-processor which strips out all user 
comments.  By default, the stripped-down control file is saved only temporarily to disk, 
and is removed as soon as aML has finished parsed the control file statements.  Option -
m causes aML to save the stripped-down control file permanently to disk, so that you may 
look at its contents.  Its name is the user-specified macrofile.   

There is no reason why you would ever want to look at a version of your control file 
without comments.  A more useful purpose of the -m option is to debug macros that you 
may embed in aML control files.  The raw2aml control file pre-processor namely 
supports a simple macro language (Section 16.2).  The stripped-down control file has all 
macros resolved; it is what aML actually parses.  Should aML protest at your use of 
macros, then this will provide a way to determine how your macros were resolved.  It is a 
particularly useful option when using nested macros, which may get tedious. 

Argument file.aml 

The last command line argument, file.aml, is not optional.  It specifies the name of the 
aML control file.  We wrote file.aml, with extension .aml, to remind you of the convention to 
name control files with a .aml extension.  However, you may specify any name. 

If you do not specify an extension, aML will first look for a control file with extension .aml.  
If such a file does not exist on disk, it will look for the file as you specified it.  For example, if you 
specify argument “abcdef”, aML will first attempt to open “abcdef.aml”; if such a file does 
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not exist, it will look for “abcdef”.  If you specified “abcdef.ctl”, aML will first look for 
“abcdef.ctl.r2a”, then for “abcdef.ctl”. 
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13. aML Control File Statements 
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aML commands are run in batch mode, i.e., you issue a complete series of commands at once.  
Those commands specify the input data set, specify models, initiate parameter values, et cetera.  
aML reads your commands from a control file and writes out the estimation results to both 
standard output (the computer window) and an output file.  This chapter documents the syntax of 
all control file statements. 
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An aML control file consists of four parts: global control and options, model element 
(“building block”) definitions, model specifications, and starting values.  Each is documented in a 
subsection below.  In addition, two subsections document indirect referencing and expressions. 

Options, definitions, model specifications, and starting values are all given in statements.  
These statements may wrap over multiple lines.  The end of a statement is delineated by a 
semicolon (“;”).  Comments may be inserted freely; they must be opened by a /* forward slash-
asterisk combination and closed by an asterisk-slash */; see Section 16.1.  Repetitive statements 
or other repetitive blocks of text may be replaced by user-defined macros; see Section 16.2.  The 
maximum line width in the control file is 80 characters.   
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13.1. Global Control and Options 
The first section of the aML control file specifies the name of the input data set, the desired 

detail of reported estimation results, settings of the maximum likelihood search algorithm, 
dimensions of scratch arrays, and several miscellaneous settings.  The name of the input data set 
must be specified in every aML control file; all other settings are optional.  The table below lists 
the available options, their default values, and the page on which they are described. 

Description Default Value Page 

Input Data Set Control 
   dsn = filename;  269

Output Control 
   option title = ’string’;  269
   option screen info level = n; 3 270
   option file info level = n; 5 270
   option numerical search; 270
   option numerical standard errors; 270
   option huber; 272
   option variance-covariance matrix; 272
   option correlation matrix; 273
   option Hessian matrix; 273
   option table format; 273
   option starting value format; 273

Search/Optimization Control 
   option observations = n; 0 274
   option weight = varname; none 274
   option normalized weight = varname; none 274
   option iterations = n; 40 274
   option step range = n [to n]; -10 to 1 275
   option save step; 276
   option converge = {wgn|rfi|gn|rpc}<x [or ...]; wgn<0.1 276

Scratch Array Control 
   option maximum specification space = n; 1000 278
   option maximum model space = n; 5000 278
   option maximum hazard baseline space = n; 4000 278
   option maximum scratch data space = n; ≥5000 278
   option maximum number of frequency categories = n; 20 279
   option maximum number of residual draws = n; 100 279
   option maximum number of hazard baseline nodes = n; 100 279
   option maximum number of reference numbers = n; 300 279
   option maximum number of user-defined constants = n; 500 280
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Description Default Value Page 
   option maximum number of hazard model splines = n; 20 280

Miscellaneous 
   option scratchdsn = filename; none 280
   option gridfile = filename[.dct]; none 280
   option ensure positive definite = {yes|no}; yes 280
   option check99999 = {yes|no}; yes 280
   option version = n; 2 281

13.1.1. dsn = filename; 

Each run must include the name of the data file to be used in estimation.  For 
example: 

dsn = mydata; 
dsn = mydata.dat; 
dsn = ..\Data\mydata; 
dsn = ”C:\My Documents\Project\mydata”; 
dsn = /max/a/Data/aml/mydata.dat; 

By default, raw2aml creates data files with extension “.dat”.  Similarly, aML 
expects to read data from “.dat” files.  It first tries to open the filename that you 
specified, with “.dat” appended.  If this fails, it drops the “.dat” extension and tries 
again.   

You may specify a relative or absolute path, as shown in the third, fourth, and fifth 
examples.  If no pathname is specified, as in the first and second examples, aML assumes 
that the file is located in the current working directory, i.e., the directory from which the 
program is run.  PC-based systems tend to use backslashes (“\”) in paths, whereas UNIX 
systems use forward slashes (“/”).  aML accepts either convention on both platforms. 

Enclosing the filename in quotes is optional.  Both single and double quotes are 
accepted, as long as you use two single or two double quotes.  If the filename includes a 
space (as in the fourth example), you must use single or double quotes.   

13.1.2. option title = ”string”; 

A title for the control file may be specified and will be printed at the top of the first 
page of the output file.  The title must fit on one line and may thus be no more than 80 
characters in length.  It must be delimited by either single or double quotes.  (Single 
quotes is suggested; use double quotes if the title itself includes single quotes.)  By 
default, there is no title.  Examples include: 
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option title = ’Title here.’; 
option title = ”Model for ’low’ and ’high’ earners”; 

13.1.3. option screen info level = n; 
option file info level = n; 

These options control the amount and detail of information that aML writes to 
standard output and output file, respectively.  There are five levels of output detail: 

Level Description 
0 No output 
1 Only estimation results including convergence criteria, parameter estimates, 

standard errors and asymptotic t-statistics. 
2 Adds for each iteration: log-likelihood at the end of each iteration. 
3 Adds for each iteration: beginning parameter value, gradient, search direction 

at stepsize 1, smallest 5 eigenvalues of the information matrix, current 
numerical values of all criteria used for convergence. 

4 Adds information about the input and output files, input data, date and time, 
convergence criteria, defined building blocks, and model statements.  

5 Adds summary statistics of outcomes, covariates, and other variables such as 
reference variables and spline origins.  

By default, aML writes the highest level of detail (5) to the output file, and an 
intermediate level (3) to the screen.  We recommend that you maintain all detail in the 
output file, and study the presented information carefully. 

13.1.4. option numerical search; 

This option instructs aML to compute the matrix of second derivatives (Hessian 
matrix) numerically, i.e., as the numerical derivative of analytically computed first 
derivatives.  This numerical Hessian is used in determining the search direction.  It also 
forms the basis for calculating standard errors of parameter estimates, so that “option 
numerical search” implies “option numerical standard errors” (see 
below). 

aML’s search algorithm is Gauss-Newton (Judge et al., 1985), so that the search 
direction d is minus the product of the inverse Hessian matrix and the gradient vector: 

12 ln lnL Ld
θ θ θ

−
 ∂ ∂ = −   ′∂ ∂ ∂  

. 

By default, the Hessian matrix is computed using the BHHH approximation (Berndt, 
Hall, Hall, and Hausman, 1974): 
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where ln iL  is the log-likelihood for the i-th observation and N is the number of 
observations.  This approximation tends to be good for large sample sizes, but can be 
poor for smaller samples.  For the purpose of searching, this is typically harmless.  The 
search direction may not be optimal, but the maximum likelihood is typically reached 
eventually.   

If the program has trouble converging, consider searching on the basis of a 
numerically computed Hessian matrix that is not subject to the BHHH approximation.  
This option can be very time-consuming: with k free parameters, a numerical Hessian 
requires k gradient evaluations.  Also see “option numerical standard errors” 
and “option huber”. 

13.1.5. option numerical standard errors; 

In order to report standard errors of parameter estimates, aML computes the 
covariance matrix of estimated model parameters.  This covariance matrix is 
asymptotically given by the inverse of minus the Hessian matrix (matrix of second 
derivatives of the log-likelihood with respect to all model parameters): 

� ln
� �Σ
θθ θ θ′

−

≈ −
∂
∂ ∂ ′
F
HG

I
KJ

2 1
L  

where θ  represents a vector of all model parameters and L the aggregate likelihood.  By 
default, aML approximates the Hessian matrix as minus the sum over observations of the 
outerproduct of first derivatives: 
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where Li is the likelihood of observation i and N is the number of observations.  This 
approximation, known as the BHHH approximation (Berndt, Hall, Hall, and Hausman, 
1974), tends to be good for large sample sizes, but can be quite misleading for smaller 
samples.  For smaller samples, and for final runs based on any sample, it is better to 
compute standard errors based on actual second derivatives.  Because of the potentially 
enormously complex models that aML supports, it does not compute analytical second 
derivatives (but see “option numerical search”).  Instead, you may optionally 
specify that you wish standard errors be based on numerical second derivatives, i.e., 
numerical first derivatives of analytically computed first derivatives:  “option 
numerical standard errors;”.  Unless “option numerical search” was also 
specified, the BHHH approximation of the Hessian matrix is computed during the search 
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procedure.  In that case, aML reports two sets of standard errors, one based on the 
“numerical Hessian” matrix and one based on the BHHH approximation.   

Computing numerical second derivatives can be very time-consuming: with k free 
parameters, a numerical Hessian requires k gradient evaluations.  Also see “option 
numerical search” and “option huber”. 

13.1.6. option huber; 

As explained under “option numerical standard errors”, aML by default 
approximates standard errors of parameter estimates based on the BHHH approximation 
of the Hessian matrix.  “Option numerical standard errors” computes a more 
accurate Hessian matrix, but the resulting standard errors remain an approximation.  With 
“option huber”, aML will compute an estimator of the covariance matrix of parameter 
estimates that is robust to some types of model misspecification, such as 
heteroskedasticity (Huber 1967; White 1980, 1982).  This estimator is also known as the 
robust, Huber, White, or sandwich estimator, or an estimator using a first-order Taylor 
series expansion.   

Optionally, upon convergence, aML calculates Huber-corrected standard errors and 
prints them along with parameter estimates.  Huber-corrected standard errors are obtained 
by pre- and post- multiplying the covariance matrix based on second derivatives 
(computed as numerical derivatives of analytic first derivatives) by the inverse of the 
BHHH estimate of the matrix variance-covariance matrix based on the outerproduct of 
(observation level) first derivatives:  

� ln ln ln ln
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The computation of Huber-corrected standard errors involves the computation of 
numerical second derivatives, and can be quite time-consuming: with k free parameters, a 
numerical Hessian requires k gradient evaluations.  Also see “option numerical 
search” and “option numerical standard errors”. 

13.1.7. option variance-covariance matrix; 

By default, aML reports standard errors of parameter estimates, but not the full 
variance-covariance matrix.  This option allows for printing of the covariance matrix of 
estimated parameters.   
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13.1.8. option correlation matrix; 

By default, aML reports standard errors of parameter estimates, but not the full 
correlation matrix.  This option allows for printing of the correlation matrix of estimated 
parameters.   

13.1.9. option Hessian matrix; 

This option allows for printing of the Hessian matrix (matrix of second derivatives) 
at convergence or the end of estimation.  If this option is combined with “option 
huber” or “option numerical standard errors”, the reported Hessian matrix is 
computed numerically, i.e., as the numerical first derivative of analytical first derivatives 
of the log-likelihood.  If neither of those options is specified, “option Hessian 
matrix” reports the BHHH-approximation to the Hessian matrix (see “option 
numerical standard errors”). 

13.1.10. option table format; 

Upon convergence, aML always reports a table of parameter estimates, standard 
errors, and t-statistics on one line per parameter.  Optionally, aML will report an 
additional table of parameter estimates with a standard error in parentheses under each 
parameter and between zero and three asterisks to indicate the level of significance in a 
two-sided test from zero.  Three asterisks (“***”) indicate significant at 1 percent; two 
asterisks (“**”) indicate significance at 5 percent, and one asterisk (“*”) indicates 
significance at 10 percent. 

If combined with “option numerical standard errors” and/or “option 
huber”, additional lines with those standard errors are added in {curly} or [square] 
parentheses. 

Note that aML comes bundled with a mktab utility.  The mktab command creates 
tables in the same was as “option table format”, but has additional functionality 
for multiple models in multiple columns and for a convenient way to import tables into 
standard spreadsheet or word processor packages.  You’ll probably like it better than the 
table format option.  See Section 15.2. 

13.1.11. option starting value format; 

This option causes aML to print end-of-run estimates in a format that is readily 
copied into a control file to begin a next model estimation.  
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Note that aML comes bundled with an update utility.  The update command reads 
an output file and updates the starting values in the corresponding control file with 
converged estimates.  You’ll probably like it better than the starting value format option.  
See Section 15.1. 

13.1.12. option observations= n; 

By default, aML estimates models based on all observations in the data.  You may 
limit the number aML uses by specifying “option observations = n”.  Only the 
first n observations will be used.  The number n may be any non-negative integer; the 
default, “0”, is interpreted as “all observations.” 

13.1.13. option weight = varname; 

By default, aML assigns equal unit weight to all observations.  This option results in 
weighted likelihood maximization.  Variable varname must be a level 1 variable.  
Optimization is based on the weighted log-likelihood and weighted first and second 
derivatives.  Standard errors and the variance-covariance matrix of the estimated 
parameters are based on the weighted second derivatives (BHHH, numerical second 
derivatives, or Huber).  

The weight variable may take any real value, even negative ones.  However, negative 
weights rarely make sense.  Should you want to account for conditioning probabilities, 
use a denominator statement in your model specification (page 320).  The use of negative 
weights to deal with conditioning probabilities will invalidate the BHHH approximation 
to second derivatives. 

13.1.14. option normweight = varname; 

Similar to “option weight”, this option also results in weighted likelihood 
maximization.  The difference from “option weight” described above is that weights 
are normalized to sum to the number of observations (sample size) so that the average 
weight is one.  By default, all observations are weighted equally with unit weight.  

13.1.15. option iterations = n; 

This option allows control of the maximum number of iterations to try for maximum 
likelihood optimization.  By default, aML iterates 40 times.  If the convergence criteria 
are not met before the final iteration, the search will fail.  A warning message will be 
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printed in the output, but parameter estimates and all requested output information will be 
computed even though it may be inappropriate.  

13.1.16. option step range = n [to n]; 

The aML search procedure uses the Gauss-Newton algorithm (see pages 25, 270, and 
Judge et al., 1985).  This procedure first checks whether the log-likelihood improves 
when the search direction is added to current parameter values.  If the log-likelihood is 
improved, it attempts to step out twice the search direction; if it is improved further, it 
doubles the stepsize again to four times the search direction.  The steps thus start with 
1=20 times the search direction and double to 2=21, 4=22, 8=23, et cetera.  It keeps 
doubling the stepsize until the log-likelihood worsens or until the maximum stepsize is 
reached.  “Option step range” controls the maximum stepsize.  Conversely, if the 
log-likelihood is worse at stepsize = 1, the algorithm tries stepsize 1/2 (=2-1); if it is still 
not improved, it tries 1/4 (=2-2), and so forth until the log likelihood improves or the 
minimum stepsize is reached.  If the log-likelihood is still improved at the maximum 
stepsize, aML starts a new iteration; if it is still not improved at the minimum stepsize, 
the search stops with a warning that convergence was not achieved.  The requested output 
is computed even though it may be inappropriate.  

The minimum and maximum stepsizes may be specified as powers of 2.  For 
example, the default for most models is: 

option step range = -10 to 1; 

which means that stepsizes may increase to 21=2 times the search direction before 
starting a new iteration and may be halved to 2-10=1/1024 before terminating with a warning 
of “failure to improve the likelihood”.  The lower limit must be negative and the upper 
limit positive, so the range must include zero.  The range may also be defined by a single 
integer value, 

option step range = n; 

in which case the range is set to “-n to n”.  For example, “option step range=5” 
is equivalent to “option step range = -5 to 5”. 

Stepping out by many search directions may improve the likelihood, but sometimes 
brings one or two parameters far away from their optimal values.  This sometimes makes 
it difficult to eventually reach the optimum parameter values.  We therefore recommend 
an upward maximum stepsize of 21=2 for most models.  However, searches of continuous 
and tobit models tend to benefit from large steps, especially when the parameters are far 
from the optimum.  The default step range for continuous and tobit models is therefore: 

option step range = -10 to 4; 

so that the maximum stepsize is 24=16 times the search direction. 
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Failure to improve the log-likelihood after stepping as far back as 2-10=1/1024 times the 
search direction may result from very poor starting values or underidentification of the 
model.  If the smallest eigenvalues of the Hessian matrix that aML reports are very close 
to zero, the Hessian matrix is near-singular, which is indicative of an underidentified 
model.  Failure to improve the log-likelihood may also be the result of a poor search 
direction.  The search direction involves the matrix of second derivatives, which is by 
default approximated by the BHHH algorithm.  This approximation can be poor in small 
samples.  If the program reports failure to improve the likelihood, consider the “option 
numerical search”, which computes the Hessian matrix more accurately (see page 
270). 

13.1.17. option save step; 

By default, the initial stepsize of the aML search algorithm is 1, i.e., aML first 
checks whether the log-likelihood improves when one times the search direction is added 
to current parameter values.  If the log-likelihood is improved, it repeatedly doubles the 
stepsize.  Conversely, if the log-likelihood is worse at stepsize = 1, the algorithm 
repeatedly halves the stepsize to 1/2 (=2-1), 1/4 (=2-2), et cetera.   

This option alters the search algorithm to begin search at the final stepsize from the 
previous iteration.  For example, if the last iteration ended in stepsize 4, then the current 
iteration will begin with stepsize 4, and proceed to increase or decrease stepsize.  
Typically, the algorithm returns to stepsize 1 as the search reaches its optimum, but 
starting at the previously optimal stepsize may save search time.  It often works well for 
continuous models. 

13.1.18. option converge = {wgn | rfi | gn | rpc} < x [or ...]; 

Convergence may be based on any one of four criteria.  The criteria are: 

Criterion Abbreviation Example 
weighted gradient norm wgn wgn < .1 
relative function improvement rfi rfi<.0001 
gradient norm gn gn <1.2 
maximum relative parameter change rpc rpc< .01 

The criteria are defined as follows: 

• Weighted gradient norm:  this criterion relates to the size of the search direction.  

The search direction is given by the product of the Hessian matrix and the vector of 
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The default is “option converge = wgn < .1”. Multiple criteria may be used 
in combination as alternatives.  Examples include: 

option converge = wgn < .01; 
option converge = wgn<.01 or rfi<.000001; 
option converge = wgn<.01 or gn<.156  ; 
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option converge = rfi<.000001 or gn<.156; 
option converge = wgn<.01 or gn<.156  or rfi < .000001; 

Multiple criteria are always alternatives, never cumulative requirements.  In other 
words, they may only be linked by Boolean operator “or”, not by “and”.  

Internally, aML automatically transforms some parameters.  For example, standard 
deviations are constrained to be strictly positive, and internally the program searches on 
natural logarithms of standard deviations.  The criteria always relate to untransformed 
parameters, i.e., to the standard deviation itself and not its natural logarithm. 

13.1.19. option maximum specification space = n; 

This option allocates memory for model specifications in your control file.  Each 
time a building block enters a model specification requires between 2 and 7 integers 
internal storage.  The default is 1,000.  If this is insufficient, aML will instruct you to 
increase it.   

13.1.20. option maximum model space = n; 

This option allocates memory space for model specifications of every outcome in an 
observation.  The default is 5,000.  If this is insufficient, aML will instruct you to 
increase it.   

13.1.21. option maximum hazard baseline space = n; 

This option allocates memory space for derivatives of baseline survivor values at all 
nodes with respect to all spline slope parameters.  The default is 4,000.  If this is 
insufficient, aML will instruct you to increase it.   

13.1.22. option maximum scratch data space = n; 

This option allocates memory space for a scratch data array.  After parsing the 
control file, aML reads the data file and creates a scratch data file with all outcomes, 
covariates, and other variables efficiently lined up.  During the creation of that scratch 
data file, all variables for a single observation are temporarily stored in memory in a 
scratch data array.  The default space for this array is max(5000,2*dimX), where dimX 
is the size of the largest observation in the data set.  If this is insufficient, aML will 
instruct you to increase it.   
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13.1.23. option maximum number of frequency categories = n; 

This option specifies the maximum number of distinct values that may appear in 
frequency tables.  For example, aML reports frequency tables of ordered probit 
outcomes, indirect reference numbers, et cetera.  If the number of distinct values exceeds 
its maximum, aML will switch to accumulation of summary statistics (mean, standard 
deviation, minimum, maximum), rather than report a complete frequency table.  The 
default maximum number of categories is 20. 

If you specify a number that is smaller than five, aML will be unable to keep track of 
the number of occurrences, mean, standard deviation, minimum, and maximum value.  If 
the number of actual categories exceeds the maximum number you specify, no 
information will be output. 

13.1.24. option maximum number of residual draws = n; 

This option allocates memory space for storing independent draw numbers of 
residuals.  Residuals in aML are independent if their draw numbers differ.  You specify 
those draw numbers in “res(draw=varname, ...)”.  In order to keep track of draw 
numbers that have already been used in the current observation, aML stores them in 
memory.  By default, the maximum number of draw numbers is 100.  If this is 
insufficient, aML will instruct you to increase it. 

13.1.25. option maximum number of hazard baseline nodes = n; 

This option allocates memory space for nodes of all duration splines entering a single 
hazard spell.  aML supports multiple duration clocks in hazard spells.  Their combined 
effect is determined by first sorting all nodes (corrected for the moment at which the 
respective clock started ticking).  This option allocates sufficient space for that process.  
The default is 100.  If this is insufficient, aML will instruct you to increase it. 

13.1.26. option maximum number of reference numbers = n; 

This option allocates memory space for storing reference numbers in the definitions 
of building blocks (regressor sets, parameters, distributions, et cetera).  All reference 
numbers of all building blocks of a particular type are stored in one array.  For example, 
you may define five regressor sets with three, four, two, zero, and zero reference 
numbers, for a total of nine reference numbers.  These nine numbers, along with some 
overhead (delimiters) are stored in one array.  There are similar arrays for other building 
block types, such as splines, parameters, and residuals.  The default maximum size of the 
arrays is 300.  If this is insufficient, aML will instruct you to increase it. 
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13.1.27. option maximum number of user-defined constants = n; 

This option allocates memory space for user-defined constants.  These include spline 
nodes, any number used in expressions, and many more.  Indeed, operators in expressions 
are themselves stored as user-defined numbers.  The default maximum number is 500.  If 
this is insufficient, aML will instruct you to increase it. 

13.1.28. option maximum number of hazard model splines = n; 

This option allocates memory space for the number of duration splines in any one 
hazard spell.  By default, the maximum is equal to the number of splines that you defined 
in the control file, plus 20.  This should be sufficient, unless you use the same spline 
multiple times per hazard spell.  If needed, aML will instruct you to increase it. 

13.1.29. option scratchdsn = filename; 

By default, aML creates a scratch data set in the current working directory, i.e., the 
directory from which the program is run.  Upon completion of the program, this scratch 
data set is removed.  It is sometimes more efficient to create the scratch file in a different 
location.  For example, when the current working directory is on a network drive, you 
may wish to create the scratch data set on a local disk instead.  “Option scratchdsn” 
allows you to specify the path and filename of the scratch data set.  Be sure to include the 
path name!   

! The file specified in “option scratchdsn” is created permanently and will not 
be removed after aML terminates.  You need to remove it yourself. 

13.1.30. option gridfile = filename[.dct]; 

By default, aML writes output from grid searches (Sections 6.2 and 13.16) to the 
regular output (.out) file.  Option gridfile directs the output to another file.  This may be 
useful for subsequent analysis of the likelihood surface using a third-party software 
package. 

If the optional gridfile name has extension “.dct”, aML writes out the results in 
Stata’s dictionary format.  This is convenient for Stata users.  Section 6.2 contains an 
example and sample Stata code. 
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13.1.31. option ensure positive definite = {yes|no}; 

Models in aML may involve normal distributions of any dimension.  These 
distributions are defined with zero mean and a user-initiated covariance matrix (in the 
form of standard deviations and correlation coefficient).  These covariance matrices, as 
any covariance matrix, must be strictly positive definite.  At dimension three and higher, 
there may be combinations of correlations which cause the matrix to be non-positive 
definite.  As aML iterates to find maximum likelihood parameters, the correlations may 
stray into illegitimate territory.  If this happens, aML’s default behavior is to reduce all 
correlation coefficients in equal proportion such that the matrix becomes (just) positive 
definite.  This default behavior may be disabled by “option ensure positive 
definite = no”.  (Both “option ensure positive definite” and “option 
ensure positive definite = yes” are supported for symmetry, but result in the 
default and are thus without effect.) 

Note that you may define distributions with the “search=cholesky” option.  This 
makes aML search over covariance parameters in Cholesky-decomposed form, thereby 
guaranteeing that the covariance matrix remains positive definite.  See page 304.  
Searching over Cholesky-decomposed parameters is typically the preferred way of 
ensuring that a covariance remains positive definite.  However, the Cholesky search may 
not be combined with equality restrictions on parameters, such as equality of two 
standard deviations or two correlations (see page 303). 

13.1.32. option check99999 = {yes|no}; 

You may specify models using indirectly referenced building blocks; see Section 
13.3.4.  If the reference variable evaluates to zero, the building block is excluded from 
the model.  As a data integrity check, we recommend that you set transformation 
variables in duration splines and regressor splines to 99999 if the corresponding reference 
variable is zero.  See Section 13.3.4.  By default, aML will check that the corresponding 
transformation variables are indeed 99999 for duration and regressor splines that drop out 
of model specifications.  This check may be disabled by specifying “option 
check99999=no”.  (Both “option check99999” and “option check99999 = 
yes” are supported for symmetry, but result in the default and are thus without effect.) 

13.1.33. option version = n; 

The features of aML version 2 are, for the most part, a superset of those of Version 
1.  Version 2 is therefore almost fully backward compatible with Version 1.  Almost 
fully, but not entirely.  The main exception is that fundamental changes were made to the 
parameterization of the negative binomial model (see Sections 2.7 and 13.12.).  The 
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version option is included to make Version 2 fully backward compatible.  The default 
setting, “option version=2”, has no effect whatsoever.  “Option version=1” has 
only two effects.  First, it makes aML revert to the syntax and algorithms of Version 1 for 
negative binomial models.  (Along with changes to the parameterization, Version 2’s 
negative binomial syntax is different, so that attempts to run Version 2 on old control 
files, without the version option, will fail and result in an informative error message.)  
Second, it makes “option step range = -10 to 4” the default for all models, as it 
was under Version 1.  Version 2’s default is slightly different:  the maximum stepsize is 
24=16 for continuous and tobit models and 21=2 for all other models (see Section 
13.1.16). 

“Option version=1” does not preclude the use of features that are new to Version 
2.  For example, it may be combined with “option numerical search” to search on 
the basis of a numerically computed Hessian matrix. 
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13.2. Building Block Definitions 
aML models must always be specified in terms of previously defined building blocks or 

“building blocks”:  regressions, distributions, splines, et cetera.  (Note our terminology: you first 
define building blocks, and then specify models.)  Conversely, each parameter to be estimated 
must be defined as (part of) a building block.  Each building block implies a set of parameters 
defined for a particular purpose according to its own syntax and may be used in the specification 
of one or more models.  Multiple building blocks of the same type may be specified (each having 
a different set of parameters values) and named uniquely or referenced indirectly by unique 
reference numbers.  The following building blocks are supported:  regressor sets, splines, scalar 
parameters, vectors, matrices, and distributions.  Multiple building blocks of the same type (e.g., 
multiple regressor sets) may be defined as long as each is uniquely identified by name or reference 
number within type.  

With minor exceptions, the user must provide initial starting values for all model parameters. 
These starting values must be given in the order in which their corresponding building blocks were 
defined. 

The following lists all building block types and the page where their syntax, options, and 
implied parameters are documented in detail.   

13.2.1. Define Parameter ....................................................................................................284 
13.2.2. Define Regressor Set ..............................................................................................286 
13.2.3. Define Spline..........................................................................................................290 
13.2.4. Define Vector .........................................................................................................295 
13.2.5. Define Matrix .........................................................................................................299 
13.2.6. Define Normal Distribution....................................................................................301 
13.2.7. Define ARMA(p,q) Distribution ............................................................................308 
13.2.8. Define Cumulative AR(1) Distribution ..................................................................313 
13.2.9. Define Finite Mixture Distribution.........................................................................315 
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13.2.1. Define Parameter 

Syntax define parameter [parname]; 
   [reference = n...n;] 
   [range = {(0,inf) | (-1,1) | (0,1)};] 

Starting Values A parameter is a scalar; order of starting values is not applicable. 

Use in a Model parameter parname 
parameter (refvar = varname) 

Description 

A parameter may be used for a variety of purposes, and it may appear in all types of models.  
Most commonly, parameters are used in interactions with other building blocks.  For example, one 
can interact regressor sets with a parameter, enabling the user to directly estimate structural 
parameters in a simultaneous equations model.  One may also use a parameter to estimate an 
intercept, though this is typically done by including the number “1” in a regressor set.  

Options and Features 

define parameter [parname]; 

The parname may be any user-defined string of up to 12 alphanumeric characters 
or underscores (“_”). 

Parameters need not have a name.  If it does not have a name, it must be identifiable 
by reference numbers, i.e., the reference option then becomes mandatory. 

reference = n...n; 

Reference numbers (if any) must be strictly positive integers.  There may be no 
duplicate reference numbers across parameters or vectors.  It is permissible, though, to re-
use reference numbers in building blocks other than parameters and vectors. 

range = {(0,inf) | (-1,1) | (0,1)}; 

By default, parameter values may be any real number.  If desired, the range of a 
parameter may be restricted to three domains, as indicated in the syntax statement.  The 
boundaries of these domains are not included.  For example, suppose you wish to limit 
the range of parameter γ  to 0 1< <γ : 
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define parameter gamma; range=(0,1); 

Similarly, “range=(-1,1)” limits the parameter to − < <1 1γ , and “range=(0,inf)” 
ensures γ > 0 .   

Range restrictions are implemented by internally transforming parameters.  Denote 
by γ  a user-defined parameter with limited range and by γ *  a transformation with 
unlimited range: 

For
For -1
For > 0,

0 1
1

2
1 1

2

2
2

< < = − ⇔ = +

< < = ⇔ =

= ⇔ =

γ γ πγ γ γ

γ γ γ γ γ

γ γ γ γ γ

π
π

π
π

, tan arctan
, tan arctan

ln exp

* *

* *

* *

b g d i
b g d i

d i
 

Internally, aML’s searches for the optimal value of γ * , unhindered by any range 
restriction.  In all results reports, the value of untransformed γ  is reported, with suitably 
untransformed standard error, derivative, search direction, et cetera. 

Output File 

Definitions of parameters are reproduced in the output (.out) file, including restrictions and 
the name of the coefficient that you give it in the starting values.  See Section 14.2.1. 
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13.2.2. Define Regressor Set 

Syntax define regressor set [regsetname]; 
   [reference = n...n;] 
   variables = varlist; 

Starting Values Each variable in varlist (or each transformation or interaction, see 
below) implies one or more parameters.  These need to be initialized in the 
order they appear in varlist. 

Use in a Model regressor set regsetname 
regressor set (refvar = varname) 

Description 

A regressor set is a vector of variables, say X , forming a regression equation, ′β X , for 
which coefficient vector β  is to be estimated (or assigned a fixed value).  The variables are 
typically just variables in the data set, but may be formed as transformations or interactions of 
variables.  The resulting regression equation may be used in any model.  Think of a regressor set 
as a ′β X . 

Options and Features 

define regressor set [regsetname]; 

The regsetname may be any user-defined string of up to 12 alphanumeric 
characters or underscores (“_”). 

Regressor sets need not have a name.  If it does not have a name, it must be 
identifiable by reference numbers, i.e., the reference option then becomes mandatory. 

reference = n...n; 

Reference numbers (if any) must be strictly positive integers.  There may be no 
duplicate reference numbers across regressor sets.  It is permissible, though, to re-use 
reference numbers in building blocks other than regressor sets. 
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variables = varlist; 

Variables in a regressor set are typically simply data variables in the data set.  aML 
recognizes one internally defined variable, “_id”, which is equal to the observation’s ID.  
Expressions, variable transformations, and interactions are allowed.  This enables you to 
keep the size of the data set small, and facilitates experimentation with functional form 
specifications.  Some illustrative permissible expressions and transformations are: 

define regset BetaX; 
   var = 1 (educ==1) (educ==3) log(income) sqrt(distance)  
         log(x+sqrt(x*x+1))  spline(age, 20 50); 

The very first “variable” is just the number “1”—it is probably the most commonly 
used expression, and captures an intercept.  This illustrates an important point: 

! aML never assumes an intercept; it must be explicitly specified.   

The educ transformations convert categorical variable educ into indicator (dummy) 
variables for education classes 1 and 3, respectively.  Note that conditions are specified 
using double equality signs (“==”), similar to the conventions in C, Stata, UNIX, and 
more environments.  The logarithm and square root transformations are self-evident.  The 
spline transformation transforms one variable, age, into three variables.  Each of the 
three new variables captures the effect of age on a particular segment: the first for ages 
under 20; the second for ages between 20 and 50; and the third for ages over 50.   

A regressor set definition implies as many parameters as there are variables, 
expressions, or transformations, except that spline transformations account for multiple 
parameters.  A spline with n nodes implies n+1 segments and thus n+1 slope parameters.  
The example above thus implies nine parameters.  These should be initialized in the order 
in which they appear in the variable list. 

You may interact scalar variables or expressions with spline transformations.  For 
example:  (educ==1)*spline(age, 30 50).  This expression would imply three 
parameters, as dictated by the spline transformation.  It is not permissible to interact two 
or more spline transformations with each other. 

There is no limit to combining transformations and expressions.  For example, 

min(age^3-12, sqrt(income), exp((survey-birthdt)/365.25)) 
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is perfectly fine, should that make sense.  (This expression evaluates to a scalar and thus 
implies just one parameter.)  See Section 13.17 for a complete discussion of expressions 
and transformations. 

You need not be concerned with the level at which variables are stored.  Specifically, 
it is OK to list variables from any level in the regressor set.  Also, you may use variables 
from different levels in an expression.  For example, if x2 is a level 2 variable and x3 is a 
level 3 variable, x2*x3 is permissible in a regressor set definition.  The resulting variable 
varies at level 3, the lower (more disaggregated) level.  (However, you should be 
concerned with logical rules pertaining to levels of variables.  Specifically, independent 
variables must be at the same or higher level as dependent variables.  For example, if the 
outcome in your model is a level 3 variable, independent variables in your regressor set 
may be level 1, 2, or 3 variables.  A level 4 variable would not make sense.  There is one 
exception to this rule:  hazard models accept time-varying variables, i.e., variables at one 
level lower than the duration and censor variables.) 

Note that you may define splines as building blocks and as part of a regressor set.  
The spline building block is almost always used to capture hazard baseline duration 
patterns, whereas splines that are part of a regressor set serve to allow the effect of an 
explanatory covariate be piecewise-linear.  The underlying transformation formulas are 
the same. 

Technical Suggestion 

Suppose you wish to capture the effect of age as a piecewise-linear spline with 
nodes at 25 and 65 years.  Allowing for an intercept and a simple shift effect of sex, 
the regressor set definition may read: 

define regset AgeEffect; 
   var = 1 (sex==1) spline(age, 25 65); 

Data variable sex takes value 1 for males and 2 for females, so the parameter 
corresponding to (sex==1) measures the extent to which males differ from females.  
Having estimated the model, you want to allow for different age profiles for men and 
women.  This may be achieved as follows: 

   define regset AgeEffect; 
      var = 1 (sex==1)  
            (sex==1)*spline(age, 25 65) 
            (sex==2)*spline(age, 25 65); 

This yields estimates of age profiles which are readily interpreted as belonging to 
males and females, respectively.  The question arises whether the age profiles for 
males and females are significantly different.  Since the first model is nested in the 
second, auxiliary program amltest is a convenient tool to answer this question 
(Section 15.3).  Alternatively, the regressor set may be defined as follows: 
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define regset AgeEffect; 
   var = 1 (sex==1) spline(age, 25 65) 
         (sex==2)*spline(age, 25 65); 

Mathematically, this formulation is equivalent to the preceding, and the resulting log-
likelihood should be identical.  The first age profile estimate relates to both males and 
females.  The second relates to females only, i.e., it is a marginal age profile which 
captures the difference between female and male profiles.  Put differently, the male 
profile is given by the first set of spline coefficients; the female profile is equal to the 
sum of the first and second sets of coefficients.  Simple t-tests on the parameter 
estimates of the second spline tell whether males and females differ on individual age 
segments; their joint significance may again be determined by auxiliary program 
amltest.  
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13.2.3. Define Spline 

Syntax define spline [splinename]; 
   nodes = [x...x]; 
   [reference = n...n;] 
   [intercept;] 
   [effect = {right | full};] 

Starting Values A spline definition with n nodes implies 1 optional intercept and n+1 slope 
parameters. The optional intercept is initialized first, if included, then the slope 
parameters. 

Use in a Model A spline may be used in two ways.  First, to represent, or be part of, the 
baseline duration dependence (hazard models only): 

duration spline(origin=varname, reference=splinename) 
duration spline(origin=varname, refvar=varname) 

and second, similar to a regressor set with one piecewise linear spline 
transformation (any type of model): 

regressor spline(variable=varname, reference=splinename)
regressor spline(variable=varname, refvar=varname) 

where all variable names may be expressions instead. 

Description 

A spline is a functional form which translates a continuous variable into a set of variables 
with a piecewise linear form in a regression.  There are two very different uses of such a linear 
transformation.  (1) In hazard models, the duration dependence is assumed to be piecewise linear 
in the log-hazard.  Every duration dependence is characterized by a pattern (nodes and slopes) and 
an origin, i.e., the moment in time relative to the beginning of a spell at which the duration 
dependence clock started or will start ticking.  The pattern is defined as part of the “define 
spline” statement; the moment in time at which the clock started or will start ticking is specified 
in the “hazard model” statement.  (2) In any type of model (hazard, probit, continuous, 
binomial, etc), one may want to include a linear spline transformation of a continuous variable as a 
regressor.  This may be done as part of a regressor set, or directly through the definition of 
a spline, which shown here.  In the former case, the user specifies the variable to be transformed as 
part of the variable list in the regressor set definition; in the latter case, the variable name is part of 
the model specification.   
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A spline definition implies an intercept (if so defined) and slope parameters on each linear 
segment.  The number of segments is equal to the number of nodes plus one, so the number of 
parameters to be initialized is the number of nodes plus one (without intercept) or plus two (with 
intercept).  The intercept (if any) is initialized before the slopes. 

There is rarely a good reason to define a spline and use it as a regressor spline.  The only case 
that we have encountered (and for which the regressor spline was conceived) involves a model of 
simultaneous equations in which the latent hazard of one process enters as a covariate of another, 
non-hazard process.  For example, consider a probit model of the decision to apply for graduate 
school.  One of the factors affecting this choice is the hazard of becoming pregnant; a pregnancy 
and subsequent motherhood would make finishing the graduate program more difficult.  The 
hazard of a pregnancy is a function of age and other variables.  You would define a spline to 
capture the baseline duration pattern of age in the hazard of becoming pregnant.  That same spline 
(and all other determinants of pregnancy risk) also affect the probit propensity of applying to 
graduate school.  It would thus be used as a duration spline in the hazard equation and a regressor 
spline in the probit equation. 

/* Pregnancy building blocks */ 
define spline AgeEffect; nodes = 18 25 35; intercept; 
define regset Fertility; var = <varlist>; 
 
/* School application building blocks */ 
define regset School; var = <varlist>; 
define parameter Lambda; 
 
/* Pregnancy equation */ 
hazard model; 
   censor=censor;  duration=lower upper; 
   model = regset Fertility + 
           durspline(origin=age, ref=AgeEffect); 
 
/* School application equation */ 
probit model; 
   outcome=apply; 
   model = regset School + 
           par Lambda * regset Fertility + 
           par lambda * regspline(var=age, ref=AgeEffect); 

In the vast majority of cases, though, it is more convenient to capture piecewise-linear effects 
of covariates by including a spline transformation in a regressor set definition.  Mathematically, 
the two approaches are equivalent. 



292 13.2.  Building Block Definitions 

 

R
ef

er
en

ce
 M

an
ua

l 

Options and Features 

define spline [splinename]; 

The splinename may be any user-defined string of up to 12 alphanumeric 
characters or underscores (“_”). 

Splines need not have a name.  If it does not have a name, it must be identifiable by 
reference numbers, i.e., the reference option then becomes mandatory. 

reference = n...n; 

Reference numbers (if any) must be strictly positive integers.  There may be no 
duplicate reference numbers across splines.  It is permissible, though, to re-use reference 
numbers in building blocks other than splines. 

nodes = [x...x]; 

The nodes are the points at which the effect of a continuous variable, or a duration 
dependence, switches to a different slope.  Nodes are real numbers and are measured 
relative to the origin of the transformation, which is the origin (zero value) of the variable 
in the data that is being transformed.  Nodes may thus be positive, zero or negative.  
However, when option  “effect=right;” is specified, the spline is operative only 
after its origin (for positive values of the data-supplied variable being transformed), so 
that nodes must be strictly positive. 

There need not be any nodes; in this case, “nodes=;” needs to be specified.  The 
result is a Gompertz duration dependence, with a constant slope (i.e., one parameter, plus 
an intercept, if any).  If the slope is fixed to zero (in the starting values), the model will 
have a constant log-hazard, i.e., this special case yields the double exponential model. 

intercept; 

By default, spline definitions do not have an intercept.  Option “intercept” 
includes an intercept.  It needs to be initialized in the starting values before the slope 
parameters. 

With rare exceptions, models need to have an intercept.  You typically have the 
choice to specify the intercept as part of a (duration) spline or of a regressor set.  
However, there are cases in which the spline intercept is crucial.  For example, suppose 
that the hazard of conceiving a child should jump up as soon as the mother experiences 
the loss of one of her children: a ‘replacement’ effect.  This jump may be realized by a 
spline duration dependence that kicks in if a child dies.  This requires that its effect will 
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be “right”, as explained below.  It also requires that the spline contains an intercept, so 
that there is an instantaneous jump in the hazard pattern. 

effect = {right | full}; 

This option determines whether the spline is operative over the full duration of the 
spell, “effect=full;”, or on the positive, right-hand side of the origin variable, 
“effect=right;”.  (The origin variable is specified in the hazard model specification, 
not as part of the spline definition.)  The default is “effect=full;”. 

In aML, there may be multiple hazard baseline dependencies on durations.  For 
example, the hazard of conceiving a second child may depend on the duration since the 
previous birth, the woman’s age (duration since her own birth), how long she has been 
married, calendar time (duration since an arbitrary point in history), et cetera.  Each 
duration dependency has a particular shape (to be estimated) which is captured by a 
duration spline, and the way in which each contributes to the overall baseline duration 
pattern depends on how long its corresponding “clock” has been ticking.  At issue is 
whether the negative part of the duration pattern should contribute to the baseline hazard. 

If the spline is defined with one or more negative nodes, you will definitely want to 
account for its pattern before its clock starts ticking, i.e., before its corresponding origin 
variable.  For example, you could specify a time trend with nodes in 1970 and 1990 by 
defining a spline with nodes at 10 and 30 years, and indicate in the hazard model 
specification that the clock should start ticking in 1960: 

define spline TimeTrend; nodes = 10 30; 
hazard model; <...> 
   model = durspline(origin=time1950, ref=TimeTrend) ...; 

where time1950 is a variable measuring the duration from January 1, 1950 to the 
beginning of the spell.  The following is equivalent: 

define spline TimeTrend; nodes = -5 15; 
hazard model; <...> 
   model = durspline(origin=time1975, ref=TimeTrend) + 
           ...; 

where time1975 measures the duration from 1/1/1975 to the beginning of the spell.  For 
spells that begin before 1975, this duration is negative.  (You could also specify 
“origin=time1950-25”.)  The two specifications yield equivalent results,32 because by 
default, splines operate both before and after their origin. 

Now suppose you wish to determine whether fertility behavior responds to the death 
of an older child.  You could create a time-varying variable flagging whether the previous 

                                                           
32 Equivalent but not identical, because the intercept will adjust to the new reference point. 
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child died, and include this variable in a regressor set.  Alternatively, you could capture 
replacement behavior by a duration spline.  If and when the previous child dies during the 
second birth interval (hazard spell), the hazard may shoot up; its pattern will indicate 
whether an elevated risk persists, or whether it increases or tapers off over time.  If the 
previous child does not die, the replacement spline should never enter the equation: 

define spline Replacement; ref=1; nodes=<...>;  
   intercept; effect=right; 
hazard model; <...> 
   model = durspline(origin=mortdur, refvar=kiddied) + 
           ...; 

where kiddied is an indicator variable for whether the previous child died, and mortdur 
is the duration from the date of death to the beginning of the spell.  Note that this duration 
will always be negative, because the spell starts at the birth date of the previous child.  It 
is equal to minus the age at which the child died.  Note that the duration spline is 
indirectly referenced using reference variable kiddied.  If kiddied=1, the Replacement 
spline enters the equation; if kiddied=0, it does not (see Section 13.3.4; in that case, 
mortdur should preferably be 99999).   

The essential feature of the replacement example is the need to specify 
“effect=right”.  We want the fertility hazard to be affected only after that moment, i.e., 
we want the replacement effect to “kick in” at a certain moment and not apply 
throughout.  By default, (effect=full), the fertility hazard would be affected both 
before and after the child’s death.  Incidentally, the “intercept” option induces a jump 
in the fertility hazard upon the death of a child; intercept jumps are always almost desired 
for splines which need to kick in at a certain moment. 

As may have become clear, the effect option is relevant only if the duration spline 
starts ticking sometime after the spell has started, i.e., if the origin variable is ever 
negative.  Positive origin variables indicate that a clock starts ticking before the spell 
started, and it is then irrelevant whether its effect applies only after that moment, or 
before it as well. 



13.2.  Building Block Definitions  

 

295

R
ef

er
en

ce
 M

an
ua

l 

13.2.4. Define Vector 

Syntax define vector [vectorname]; 
   [reference = n...n;] 
   dimension = n; 
   [range = {(0,inf) | (-1,1) | (0,1)};] 
   [increasing = {yes|no};] 
   [initial = {ghq weights | ghq points(std=x)};] 

Starting Values A vector definition with dimension n implies n parameters which are 
initialized in the order they occupy in the vector, from 1 to n. 

Use in a Model Vectors serve two purposes.  First, to capture thresholds in ordered logit and
ordered probit models: 

thresholds = vectorname; 

or as points or as weights in the definition of a finite mixture distribution. 
Note that vectors are used here as part of the definition of another building
block, not directly as part of a model specification: 

points = vectorname; 
weights = vectorname; 

Description 

A vector is a set of one or more parameters used as a set.  A vector may be used to specify the 
thresholds in ordered logit and ordered probit models or to specify the points and the weights in 
the definition of a finite mixture distribution.   

Options and Features 

define vector [vectorname]; 

The vectorname may be any user-defined string of up to 12 alphanumeric 
characters or underscores (“_”). 

Vectors need not have a name.  If it does not have a name, it must be identifiable by 
reference numbers, i.e., the reference option then becomes mandatory. 
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reference = n...n; 

Reference numbers (if any) must be strictly positive integers.  There may be no 
duplicate reference numbers across parameters or vectors.  It is permissible, though, to re-
use reference numbers in building blocks other than parameters and vectors. 

dimension = n; 

This statement determines the number of parameters in the vector.  There is no 
default.  The number of starting values that needs to be initialized is equal to the number 
of parameters in the parameter set.  A vector with unit dimension is equivalent to a 
parameter. 

range = {(0,inf) | (-1,1) | (0,1)}; 

The range option allows the user to restrict all vector elements, similar to the range 
restrictions on parameters (see above).  The boundaries of these ranges are not included.   

increasing = {yes|no}; 

This option allows the parameters to be restricted to be in strictly increasing order as 
required by the models in which the parameters are used.  The default is that strict 
ordering is imposed.  (You may expressly specify this by “increasing=yes” or just 
“increasing;”.)  A vector may be used to specify the thresholds in ordered logit and 
ordered probit models or to specify the points and the weights in the definition of a finite 
mixture distribution.  In both applications, the vector elements should be strictly 
increasing.  By turning off the increasing restriction, you risk that the vector elements 
cross each other in the search procedure.   

Internally, the strict increase of vector elements is achieved by transforming the 
second and subsequent vector elements into the natural logarithm of the difference 
between each parameter and its predecessor.  Denote the user-defined, untransformed 
parameters by τ τ1,..., n  and the internal transformations by τ τ1

* *,..., n , then: 

τ τ
τ τ τ

τ τ τ

1 1

2 2 1

1

*

*

*

ln

ln

=
= −

= − −

b g

b g
#

n n n

 

aML searches for the optimal value of τ τ1
* *,..., n , unhindered by any range restriction 

(except possibly on τ 1
* , see next paragraph).  In all results reports, the value of 
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untransformed τ τ1,..., n  is reported, with suitably untransformed standard errors, 
derivatives, search directions, et cetera. 

The increasing option may not be used in combination with range restrictions (-1,1) 
or (0,1).  The combination with range restriction (0,Inf) is supported.  In that case, τ 1

*  is 
transformed to be τ τ1 1

* ln= ; see Section 13.2.1, in particular page 284. 

initial = {ghq weights | ghq points(std=x)}; 

This option lets aML pick starting values for the vector.  It should only be used for 
vectors that serve as weights or support points for finite mixture distributions (Section 
13.2.9).  Instead of specifying numerical values in the “starting values” statement, 
specify the word “auto”.  

A common research strategy for estimating a univariate distribution is to (1) assume 
that the distribution is normal, and estimate a standard deviation, and (2) relax the 
normality assumption in favor of a finite mixture distribution, and determine whether the 
resulting points and weights are at odds with the normality assumption.  (A formal test is 
not available.)  In step (2), you will want to initialize your parameters such that the finite 
mixture distribution has the same variance and zero mean as the estimated normal 
distribution. 

For example, suppose you at first assumed the normal distribution and estimated its 
mean to be 1.25.  You now decide to use a finite mixture with three points instead.  As 
explained in Section 13.2.9, this requires two vectors.  The first vector, of dimension 3, 
defines the points themselves; the second vector, of dimension 2, defines the weights 
corresponding to the three points.  (Weights must add up to one, so only two weights are 
estimated.)  The two vectors and their starting values may be specified as follows: 

define vector Points;  dim=3; initial=ghq points(std=1.25); 
define vector Weights; dim=2; initial=ghq weights; 
define finite mixture distribution; dim=1; 
   form=asymmetric; 
   points=Points; 
   weights=Weights; 
   name=...; 
<...> 
starting values; 
Point1    F   auto 
Point2    T   auto 
Point3    T   auto 
Weight1   T   auto 
Weight2   T   auto 
<...> 
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; 

Note that we fixed the first point, as it is perfectly collinear with the intercept term 
(not shown).  aML automatically initializes the starting values such that the mean of the 
finite mixture distribution is zero, and its standard deviation 1.25.  The points and 
weights correspond to those of Gauss-Hermite Quadrature, hence the “ghq” in the 
initialization options.  For further details on finite mixture distributions see Section 
13.2.9.  aML comes bundled with auxiliary program points, which computes Gauss-
Hermite Quadrature points and weights.  For further details see Section 15.4 and Davis 
and Rabinovitz (1967). 
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13.2.5. Define Matrix 

Syntax define matrix matrixname; 
   dimension = (n1,n2); 

Starting Values A matrix definition with dimension (n1,n2) (i.e., n1 rows and n2 columns) 
implies n1*n2 parameters which are initialized in accordance with matrix
columns: 

first (n1+1) - th (n1*(n2 -1) +1) - th
second (n1+ 2) - th
third

n1- th (2 * n1) - th (n1* n2) - th

"
#

#
# # %

"

F

H

GGGGGG

I

K

JJJJJJ
 

In other words, element (i,j) is initialized in position (i+n1*(j-1)). 

Use in a Model Matrices are never used as entities; only matrix elements are used in model 
statements. Both the elements of a matrix and of its inverse may be used. This
feature enables the specification of systems of simultaneous equations, as
explained below. An element of a matrix or of an inverse- matrix may be used 
as follows: 

parameter matrixname(i,j) 
parameter inverse(matrixname(i,j)) 

Description 

A matrix is a set of parameters that used together in simultaneous equations.  You may use 
both elements of the matrix and of its inverse in model specifications.  The direct use of matrix 
elements is equivalent to the use of parameters and adds little or no functionality.  The use of 
elements of the inverse matrix allows specification of fully simultaneous models.  Be warned: 
model specifications with inverse matrix elements are quite tricky; see Section 4.2.2. 

Options and Features 

define matrix matrixname; 

The matrixname may be any user-defined string of up to 12 alphanumeric 
characters or underscores (“_”). 
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Unlike most other building blocks, matrices must have a name.  Identification of 
matrix elements by reference numbers is not implemented, primarily because it would not 
make sense with inverse matrix elements. 

dimension = (n1,n2); 

This statement determines the number of rows and number of columns, respectively, 
in the matrix.  There is no default.  The number of starting values that needs to be 
initialized is n1*n2.   

Unlike in parameters and vectors, there is no option to impose range or cross-restrictions on 
the parameters that make up matrices. 
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13.2.6. Define Normal Distribution 

Syntax define normal distribution; 
   dimension = n; 
   [number of integration points = n [n...n];] 
   name = [resname_1];  [reference = n...n;] 
        : 
   name = [resname_n];  [reference = n...n;] 
   [restrictions ....;] 
   [search = cholesky;] 

Starting Values A normal distribution with dimension n implies n*(n+1)/2 parameters: n
standard deviations and n*(n-1)/2 correlation coefficients.  The mean 
vector is always zero.  The standard deviations are initialized first, followed by
correlation coefficients on the lower triangle, column by column.  Consider
this matrix with standard deviations on the diagonal and correlation 
coefficients off-diagonally: 

first
(n 1) th second
(n 2) th (2 * n) th third

(2 * n 1) th (3* n 3) th (n *(n 1) / 2) th n - th

+ −
+ − −

− − − − + −

F

H

GGGGGG

I

K

JJJJJJ# # # %
"

 

The covariance matrix is symmetric, and elements on the upper triangle are
not initialized.  Equivalently, one may view the initialization of correlation
coefficients as row-by-row on the upper triangle.  

If the optional cross-restrictions on standard deviations and/or 
correlation coefficients are imposed, only the value of the first parameter listed
in (on the left-hand-side of) a restriction statement is initialized, as explained 
below. 
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Use in a Model Distributions are never used as entities; only residuals (normal variates
composing the stochastic terms of the distribution) are used in model
statements.  Normal residuals may or may not be numerically integrated out,
and may be directly or indirectly referenced: 

[integrated] residual(draw=varname, ref=resname) 
[integrated] residual(draw=varname, refvar=varname) 

Normal residuals used in hazard, logit, binomial, and negative binomial
models must be integrated out; non-integrated residuals are only allowed in 
continuous and probit models. 

The same independent draw of a distribution may be used in multiple
replications of outcomes, as controlled by the “draw” variable.  The same 
value of varname triggers the same draw (same values) of the vector of 
normal variates for all model statements in all data structures.  See Sections
4.1 and 13.3.6. 

Description 

A distribution is a relatively complex form of building block.  It consists of one or more 
dimensions (residuals), each of which may be used in one or more model statements.  Residuals 
may be directly referenced, by name, or indirectly, by a reference variable.  More than one 
dimension of a distribution may be referenced in any one model statement.   

aML automatically restricts standard deviations to be strictly positive and correlations to be 
strictly between -1 and 1.  (For a brief technical description of the internal implementation of these 
restrictions, refer to the range option of the define parameter statement in Section 13.2.1.) 

Options and Features 

define normal distribution; 

No name or optional items may be specified for the distribution per se.  The 
distribution is never used as an entity and thus need not have a name.  Only its 
dimensions (residuals) are used and may have names. 

dimension = n; 

This specifies the dimension of the distribution.  It also determines the number of 
standard deviations and correlation coefficients that need to be initialized, unless there 
are restrictions (see below under “option restrictions”).  A distribution of 
dimension n implies n standard deviations and n*(n-1)/2 correlation coefficients.  
The user needs to specify starting values of these standard deviations and correlation 
coefficients, not of variances and covariances. 
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name = [resname]; 

The resname (residual name) may be any user-defined string of up to 12 
alphanumeric characters or underscores (“_”). 

Residuals need not have a name.  If it does not have a name, it must be identifiable 
by reference numbers, i.e., the reference option then becomes mandatory.  However, 
there must always be a “name=;” statement, so that aML can assign reference numbers 
to the correct residuals. 

You must specify as many residual names as there are dimensions of the distribution.  

reference = n...n; 

Reference numbers (if any) must be strictly positive integers.  There may be no 
duplicate reference numbers across residuals, including residuals of other distributions.  It 
is permissible, though, to re-use reference numbers in building blocks other than 
distributions. 

Name and reference statements must always appear pairwise.  In other words, a 
reference statement must immediately follow its corresponding residual name statement.  
For example: 

define normal distribution; dim=2; 
name=u1;  ref=10 20 30; 
name=u2;  ref=45; 

or: 

define normal distribution; dim=2; 
name=;  ref=10 20 30; 
name=;  ref=45; 

Note that there must be as many name statements as there are dimensions, even if one or 
more residuals are unnamed.  

restrictions ....; 

You may place equality restrictions on standard deviations and/or on correlation 
coefficients of distributions with at least two dimensions.  Standard deviations may be 
restricted to be equal to each other, correlation coefficients may be restricted to be equal 
to each other, but a standard deviation may not be restricted to be equal to a correlation 
coefficient.  Restrictions on standard deviations are specified as, e.g., 

restriction sigma(1)=sigma(2); 

Restrictions on correlations are specified as, e.g., 

restriction rho(2,1)=rho(3,1); 
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More than two parameters may be restricted to be equal, e.g., 

restrictions rho(2,1)=rho(3,1)=rho(3,2); 

As many restrictions may be imposed as desired, either in separate statements or in a 
combined statement: 

restrictions sigma(1)=sigma(2) 
             rho(2,1)=rho(3,1)=rho(3,2); 

Each restriction reduces the number of parameters that fully determines the 
distribution.  Be careful with the order in which standard deviations and correlations are 
initialized.  Only standard deviations and correlations on the left-hand-side of the first 
equality should be initialized. 

! Standard deviations or correlation coefficients that enter on the right-hand-
side of restriction statements (to the right of the first equality sign in a 
restriction statement) are not initialized in the list of starting values.  Be 
careful with the initialization order and check the covariance matrix that is 
printed out in the output file to make sure that the program interpreted your 
restrictions and definitions correctly. 

search = cholesky; 

This option internally transforms standard deviations and correlation coefficients into 
a Cholesky decomposition of the covariance matrix.  In addition, it transforms the 
diagonal elements of the Cholesky decomposition (which must be positive) into their 
natural logarithm.  The maximum likelihood search procedure searches for the optimal 
values of the transformed covariance matrix, unhindered by any range restrictions.  In all 
results reports, the value of the untransformed standard deviations and correlations are 
reported, with suitably untransformed standard errors, derivatives, search directions, et 
cetera. 

The user specifies the covariance structure of a normal distribution in terms of its 
standard deviations and correlation coefficients.  By default, aML imposes the 
restrictions that standard deviations must be positive and correlation coefficients between 
–1 and 1.  This ensures that the implied covariance matrix is positive definite 
(“legitimate”) for distributions up to bivariate (dim=2).  It also helps maintain positive 
definiteness for trivariate and higher-dimensional distributions, but there is no guarantee.  
The search algorithm may generate values for the standard deviations and correlation 
coefficients which would imply a non-positive definite covariance matrix.  When that 
happens, the likelihood function returns a log-likelihood equal to NaN (“not-a-number”), 
which is considered worse than any other value.  The search algorithm will attempt to 
correct itself by stepping out less far, but it does not always succeed. 
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We suggest that you specify “search=cholesky” for distributions of dimension 
three or higher, if the maximum likelihood search procedure has trouble converging.  
You could always specify it for trivariate and higher-dimensional distributions, but 
experience shows that the search on Cholesky-decomposed parameters is sometimes less 
efficient than on standard deviations and correlations that have been transformed using 
the default transformations. 

The Cholesky option may not be combined with equality restrictions on standard 
deviations or correlations (“restrictions” option, above). 

Note that aML has a second line of defense against non-positive definite covariance 
matrices.  By default, if a non-positive definite covariance is encountered, aML will 
proportionally reduce all correlation coefficients until the matrix is positive definite.  See 
“option ensure positive definite” on page 280.   

number of integration points = n [n...n]; 

The likelihood of some models with normally distributed residuals does not have a 
closed form solution.  This is true for hazard models, (ordered, multinomial) logit 
models, (negative) binomial models, Poisson models, some (ordered, multinomial) probit 
models, etc.  In those cases, aML offers an approximation:  numerical integration of the 
residuals.  The approximation’s accuracy depends on the number of support points or 
“integration points”.  The more integration points, the more accurate the approximation to 
a normal distribution is, but also the more computations need to be performed. 

Each support point requires a function evaluation.  The number of support points for 
multivariate distributions is the product of the numbers for every dimension.  For 
example, a trivariate distribution with six support points per dimension requires 63=216 
function evaluations.   

By default, aml uses twelve support points for univariate normal distributions, eight 
for both dimensions of bivariate distributions (i.e., 64 function evaluations), and six per 
dimension for distributions of dimension three or more.  The user may specify fewer or 
more support points as part of the definition of the distribution.  For time-consuming 
problems, in particular, you may wish to reduce the number of points while developing 
your model and revert to greater precision for the final run. 

You may specify different numbers of points for different dimensions of the 
distribution.  For example, suppose you define a trivariate normal distribution with 
residuals delta, eps, and eta, and you wish to approximate the three residuals by five, 
four, and two integration points: 

define normal distribution; dim = 3; 
   number of integration points = 5 4 2; 
   name = delta; 
   name = eps; 
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   name = eta; 

If the number of integration points is the same for all dimensions, you may specify 
just one number.  In other words, the following are equivalent: 

define normal distribution; dim = 3; 
   number of integration points = 5 5 5; 

and 

define normal distribution; dim = 3; 
   number of integration points = 5; 

The points are chosen using Gauss-Hermite Quadrature.  Suppose you specify a 
normal distribution with k dimensions and n integration points in each dimension.  aML 
first computes n standardized points which approximate a univariate standard normal 
distribution.  These follow from zero solutions of the Hermite polynomial of order n, and 
weights are found as corresponding coefficients of the n-th order Gauss-Hermite 
Quadrature formula of degree 2n-1 (Davis and Rabinovitz, 1967).  This method is 
extended to handle k-variate integration by selecting all nk  possibilities of k draws out of 
n points (with replacement).  The appropriate weight for each set is the product of k 
individual (univariate) weights.  These nk  sets of points and weights approximate a k-
variate standard normal.  In order to approximate other k-variate normals (with zero 
means), aML premultiplies each set of k draws by the Cholesky decomposition of the 
covariance matrix of the distribution.  The marginal likelihood is computed as the 
properly weighted accumulation of nk  conditional likelihoods. 

The figure 
illustrates the points 
and weights that are 
chosen for a univariate 
distribution with seven 
integration points.  The 
more points, the closer 
the approximation to a 
normal distribution.  
aML comes bundled 
with auxiliary program 
points, which 
computes points and 
weights for any 
number of integration 
points; see Section 
15.4.   
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Residuals from a distribution which is defined with a number of integration points 
may be integrated out, but they need not be.  For example, suppose you estimate a 
multilevel selection model with a continuous and a probit equation.  Both equations 
include a person-specific normal residual (heterogeneity component) which is common 
over multiple replications of the outcomes of interest.  You may wish to integrate-out the 
probit heterogeneity component, but ask aML to compute the closed-form solution to the 
continuous modules.  aML will first compute the distribution of the probit residual 
conditional on the continuous outcomes, and then integrate numerically.  The bivariate 
distribution then essentially implies a univariate integration, which reduces the number of 
calculations that needs to be performed.. 

The computational burden increases roughly linearly with the number of points in a 
univariate distribution, roughly quadratically in a bivariate distribution, et cetera.  For 
models with multivariate integrated distributions, we recommend that you specify a 
relatively low number of integration points (say, four in each dimension) during the 
model exploration stage, and move to a higher level of accuracy (say, twelve points in 
each dimension) for production runs. 
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13.2.7. Define ARMA(p,q) Distribution 

Syntax define {ar(p) | ma(q) | arma(p,q)} distribution; 
   [dimension=1;] 
   timevar [(within level n)] = varname;  
   [increasing={yes|no};] 
   [ardomain = {(-1,1) | (0,1)};] 
   [madomain = {(-1,1) | (0,1) | (0,Inf)};] 
   name = [resname]; [reference = n...n;] 

Starting Values The first p parameters initialized are the autoregressive coefficients; the next
parameter is the standard deviation of the innovation term; the last q are 
moving average coefficients. 

Use in a Model The distribution is not used as an entity; only the stochastic term is used in 
model statements, by reference to its name or by reference number.  An
ARMA residual may only be used in continuous models, and may not be
integrated out.  The syntax for direct and indirect reference is: 

residual(draw=_iid, ref=resname) 
residual(draw=_iid, refvar=varname) 

A time series vector of values of the normal residual term represented by the
distribution are correlated according to the ARMA(p,q) model.  Independent 
draws of random vectors from the same distribution may be used in multilevel 
modeling.  All innovation terms must be drawn independently (draw=_iid). 

Description 

aML supports normally distributed ARMA(p,q) processes with arbitrary autoregressive and 
moving average orders.33  Only univariate ARMA distributions are supported.  ARMA 
distributions are defined in a similar manner as other distributions, and the corresponding residuals 
are used in a similar manner, too.  ARMA distributions may only be used in continuous models.  
The general formulation of an ARMA(p,q) process is: 

v v e et i t i t j t j
j

q

i

p

= + +− −
==

∑∑φ θ
11

, 

where φ φ1, ,… p  are autoregressive coefficients, et  is the innovation term, and θ θ1, ,… q  are 
moving average coefficients. 

                                                           
33 Subject to hardwired maximum orders of p ≤ 9  and q ≤ 9.   
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Since vt  depends on vt−1  and prior values of the residual, you must specify a variable that 
contains “time points” as part of the definition of an ARMA distribution.  That variable must be at 
the same level as the continuous outcome variable.  These time points are used to determine the 
lags between successive continuous records.  The time points must be integer-valued, except for 
AR(1) distributions in which the autoregressive parameter is merely restricted to be positive. 
Usually, points in time will be spaced one period apart, but points in time may be missing (omitted 
from the data) so that points in time are unequally spaced.  The time points must be strictly 
increasing. 

An ARMA(p,q) distribution has p+1+q parameters.  They are initialized in this order: 
( , , , , , , )φ φ σ θ θ1 1… …p e q . Note that, in accordance with the convention for other types of 
distributions, the standard deviation of the innovation term is initialized and estimated, not the 
variance.   

Options and Features 

define {ar(p) | ma(q) | arma(p,q)} distribution; 

This statement specifies the autoregressive and/or moving average order.  No 
distribution name may be specified. 

dimension=1; 

ARMA distributions always have only one dimension. For consistency with the 
normal distribution, a dimension statement may be specified, but it is optional. 

ardomain = {(-1,1) | (0,1)}; 
madomain = {(-1,1) | (0,1) | (0,Inf)}; 

The optional ardomain and madomain statements restrict the autoregressive and 
moving average parameters to be in the indicated ranges.  The default is that all 
autoregressive parameters are within (-1,1), and that moving average parameters are 
unrestricted.  If the timevar is not integer-valued, ardomain must be restricted to 
(0,1); this is only valid in AR(1) distributions.  The domain restrictions are strict, i.e., 
boundary values (-1, 0, or 1 as relevant) are excluded from the domain.  

Internally, the restrictions are implemented through parameter transformations, as 
explained in Section 13.2.1, particularly page 284. 

name = [resname]; 

The resname (residual name) may be any user-defined string of up to 12 
alphanumeric characters or underscores (“_”). 
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ARMA residuals need not have a name.  If it does not have a name, it must be 
identifiable by reference numbers, i.e., the reference option then becomes mandatory.  
However, there must always be a “name=;” statement. 

reference = n...n; 

Reference numbers (if any) must be strictly positive integers.  There may be no 
duplicate reference numbers across residuals, including residuals of other distributions 
(normal, ARMA, finite mixture, or other).  It is permissible, though, to re-use reference 
numbers in building blocks other than distributions. 

timevar [(within level n)] = varname; 

Each continuous outcome occurs at a point in time, forming a vector of time series 
observations within a continuous model statement.  The values of the variable varname 
are used to determine the timing of each outcome in the vector.  These values of time 
must be integer values, except in the AR(1) distribution.  Distances in time between 
points are calculated as the differences in the values of varname specified for each 
point.  The values of the continuous outcome variable named in the model statement are 
linked by their respective points in time.  The time distance between pairs of points 
determines the correlation (and covariance) between the two corresponding outcome 
values.  These correlations are well defined even when there are time gaps in the time 
series.  

The within specification of the timevar statement indicates whether all residuals 
are autocorrelated, or whether autocorrelation only exists within branches of a certain 
level.  The default is (within level 1), i.e., all residuals are autocorrelated.  See 
below for more details. 

increasing={yes|no}; 

By default, aML checks that the time variable is strictly increasing within its level.  
If for some reason your data are not ordered in increasing time, you may turn off this 
check with “increasing=no”. 

Autocorrelation within level 

The default is that all residuals within a certain observation are autocorrelated.  However, it 
may be the case that residuals are only autocorrelated within well-defined subsets of the data, or 
within certain time-intervals, and uncorrelated across those subsets or intervals.  This is controlled 
by the within specification of the timevar statement.   

Consider an example.  Suppose one wishes to estimate an income-generating process with 
annual data from 1980 through 1988 (nine years).  Variable time takes corresponding values 
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1980 through 1988 (or 80 through 88, or other sets of nine contiguous integer values).  The 
observation thus contains nine outcomes.  Suppose the observation is divided into two level 2 
branches; the first branch contains two outcomes (annual income records), and the second branch 
is in turn subdivided into two level 3 branches with four and three outcomes each.  Denote the 
variance of the ARMA(p,q) process by γ 0  and the first through eighth autocovariances by γ 1  
through γ 8 .   

The default is that all residuals are autocorrelated, “timevar = time;”, so that the 
covariance matrix is given by: 

Σ =

F

H

GGGGGGGGGGGG

I

K

J
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ

0 1 2 3 4 5 6 7 8

1 0 1 2 3 4 5 6 7

2 1 0 1 2 3 4 5 6

3 2 1 0 1 2 3 4 5

4 3 2 1 0 1 2 3 4

5 4 3 2 1 0 1 2 3

6 5 4 3 2 1 0 1 2

7 6 5 4 3 2 1 0 1

8 7 6 5 4 3 2 1 0

JJJJJJJJJJJ

 

If the time variable was specified as “timevar (within level 2) = time;”, the 
residuals would be independent across level 2 branches: 

Σ =

F

H

GGGGGGGGGGGG

I

K

JJJJJJJJJJJJ

γ γ
γ γ

γ γ γ γ γ γ γ
γ γ γ γ γ γ γ
γ γ γ γ γ γ γ
γ γ γ γ γ γ γ
γ γ γ γ γ γ γ
γ γ γ γ γ γ γ
γ γ γ γ γ γ γ

0 1

1 0

0 1 2 3 4 5 6

1 0 1 2 3 4 5

2 1 0 1 2 3 4

3 2 1 0 1 2 3

4 3 2 1 0 1 2

5 4 3 2 1 0 1

6 5 4 3 2 1 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

, 

and if “timevar (within level 3) = time;” were specified, there would be no 
autocorrelation across level 3 subbranches: 
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Σ =

F

H

GGGGGGGGGGGG

I

K

JJJJJJJJJJJJ

γ γ
γ γ

γ γ γ γ
γ γ γ γ
γ γ γ γ
γ γ γ γ

γ γ γ
γ γ γ
γ γ γ

0 1

1 0

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

0 1 2

1 0 1

2 1 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. 
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13.2.8. Define Cumulative AR(1) Distribution 

Syntax define cumulative ar(1) distribution; 
timevar [(within level n)]  = varname; 
   [ardomain = {(-1,1) | (0,1)};] 
   name = [resname];  [reference = n...n;] 

Starting Values Similar to the AR(1) distribution, the first parameter is the autoregressive
coefficient and the second is the standard deviation of the innovation term. 

Use in a Model The distribution is not used as an entity; only the stochastic term (residual) is
used in model statements, by reference to its name or by reference number.  A 
CAR(1) residual is used exactly as an AR(1) residual.  It may only be used in
continuous models, and may not be integrated out. The syntax is for direct and
indirect reference is: 

residual(draw=_iid, ref=resname) 
residual(draw=_iid, refvar=varname) 

A time series vector of values of the normal residual term represented by the
distribution are correlated according to the CAR(1) model.  Independent draws
of random vectors from the same distribution may be used in multilevel 
modeling.  All innovation terms must be drawn independently (draw=_iid). 

Description 

The Cumulative AR(1) is very similar to the AR(1) distribution.  The difference is that a 
cumulative AR(1) process is assumed to start at t=1, i.e., when the time variable “timevar” 
varname takes the value one, whereas AR(1) processes are assumed to have an infinite history.  
The definition of the variable representing points in time in the data must be defined in reference 
to the initial period, the time when the process began.  Unlike in AR(1) models, you may thus not 
measure time relative to an arbitrary point in history.  There need not be an actual record with 
“timevar” variable varname=1; the process is assumed to start at that point, but the 
corresponding record may be missing. 

AR(1) versus CAR(1) 

Both the AR(1) and the CAR(1) distributions imply two parameters:  the autoregressive 
correlation and the standard deviation of the innovation term.  Denote 

v t v t u tt t
2 1 2

2 1b g b g b g= +−ρ | | ,  
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where ρ  is the autoregressive parameter and u is the innovation.  The standard deviation of the 
innovation is σ u .  The essential difference between the AR(1) and the CAR(1) is that the AR(1) 
distribution assumes an infinite history of the innovations so that the distribution is time-stationary 
with equal variances over time and equal covariances and correlations among equally distanced 
periods.  (Alternatively, the AR(1) process assumes that its variance in the initial period (only) is 
σ ρv

2 21−d i  so that the process is jump-started into stationarity.)  The AR(1) is thus characterized 
by: 

σ σ ρv u
2 2 21= +/ d i     and    σ σ ρ

τ

τ
v v u

t
t

= −2     and     ρ ρ
τ

τ
v v

t
t

= − . 

Instead. the CAR(1) distribution assumes a finite history of the innovations beginning at period 1 
so the distribution is not time stationary—the variances and covariances and correlations among 
equally distanced periods increase over time: 

σ σ ρ
ρv u

t

t

2 2
2

2
1
1

=
−
−

     and     σ σ ρ ρ
ρτ

τ
τ

v v u
t

t
=

−
−

−2
2

2
1
1

    and   ρ ρ
τ

τ ρ
ρ

τ

v v
t

t t= − −
−

1
1

2

2  

where t ≥ ≥τ 1 .  Note that for the CAR(1), ρ ρ
τ

τ
v v

t
t

≤ −  and ρ ρ
τ

τ
v v

t
t

→ −  as t ,τ → ∞ , for given 

t − τ . 

Options and Features 

All options and features are identical to those of the AR(1) process (described above). 
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13.2.9. Define Finite Mixture Distribution 

Syntax define finite mixture distribution; 
   [dimension = 1;] 
   form = asymmetric; 
   points = vectorname; 
   weights = vectorname; 
   name = [resname];  [reference = n...n;] 

Starting Values The definition of a finite mixture distribution does not imply any new
parameters.  It is determined entirely by its points and weights, which follow
from previously defined vectors. 

Use in a Model Distributions are never used as entities; only the implied stochastic term is
used in model statements.  A finite mixture stochastic term must always be
integrated out.  The syntax for direct and indirect references is: 

integrated residual(draw=varname, ref=resname) 
integrated residual(draw=varname, refvar=varname) 

Independent draws of the finite mixture stochastic terms may be used in
multilevel models.  Values from the same draw may be linked by the use of a
common value of a variable or expression, “draw=varname”. 

Description 

aML supports univariate asymmetric finite mixture distributions.  These may only be used as 
integrated residuals.  The definition of a finite mixture distribution requires two vectors that have 
been previously defined.  The first vector represents the finite mixture points; the second (is 
transformed to represent) weights.  There are several features that need improvement; the current 
implementation is preliminary.  In particular, the way in which weights are specified is 
cumbersome, and symmetric finite mixture distributions have not yet been implemented. 

Consider the following example which defines a finite mixture distribution with four points: 

define vector Points;  dim=4; increasing=yes; 
define vector Weights; dim=3; increasing=yes; 
define finite mixture distribution; dim=1; 
   form=asymmetric; 
   points=Points; weights=Weights; 
   name=eps; 

Note that vector Weights only contains three points.  The weights are computed as follows: 
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wt
wt
wt
wt

1 1

2 2 1

3 3 2

4 31

=
= −
= −
= −

Φ
Φ Φ
Φ Φ

Φ

τ
τ τ
τ τ

τ

b g
b g b g
b g b g
b g

 

where τ 1 , τ 2 , and τ 3  represent the three parameters in parameter set Weights.  (It would be 
more elegant to define Weights in terms of probabilities; this is yet to be implemented.)  Since 
weights are restricted to sum to one, only three parameters are needed to specify four weights. 

A common research strategy for estimating a finite mixture distribution is to (1) assume that 
the distribution is normal, and estimate a standard deviation, and (2) relax the normality 
assumption in favor of a finite mixture distribution.  In step (2), you will want to initialize your 
parameters such that the finite mixture distribution has the same variance and zero mean as the 
estimated normal distribution.  aML offers a convenient way of doing this. 

For example, suppose you at first assumed the normal distribution and estimated its mean to 
be 1.25.  You now wish to use a finite mixture with four points instead.  This requires two vectors.  
The first vector, of dimension 4, defines the points themselves; the second vector, of dimension 3, 
defines the weights corresponding to the three points.  The two vectors and their starting values 
may be specified as follows: 

define vector Points;  dim=4; initial=ghq points(std=1.25); 
define vector Weights; dim=3; initial=ghq weights; 
define finite mixture distribution; dim=1; 
   form=asymmetric; 
   points=Points; 
   weights=Weights; 
   name=...; 
<...> 
starting values; 
Point1    F   auto 
Point2    T   auto 
Point3    T   auto 
Point4    T   auto 
Weight1   T   auto 
Weight2   T   auto 
Weight3   T   auto 
<...> 
; 

Note that we fixed the first point, as it is perfectly collinear with the intercept term (not 
shown).  aML automatically initializes the starting values such that the mean of the finite mixture 
distribution is zero, and its standard deviation 1.25.  The points and weights correspond to those of 
Gauss-Hermite Quadrature, hence the “ghq” in the initialization options.  aML comes bundled 
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with auxiliary program points, which computes Gauss-Hermite Quadrature points and weights.  
For further details see Section 15.4 and Davis and Rabinovitz (1967). 

Identification 

Special care must be exercised in making sure that your model is identified.  Since the finite 
mixture distribution is not symmetric, it will generally have a non-zero mean.  This implies that 
one cannot estimate both a regression intercept and all finite mixture points.  In the example 
above, we therefore fixed the first point at its starting value by specifying an “F”.  Alternatively, 
you may omit or fix the intercept term, or fix one of the finite mixture points to any value.  
However, you may not fix one finite mixture point to a value of your choice (say, zero) in 
combination with asking aML to generate starting values automatically. 
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13.3. Model Specifications—General 
All models must be specified in terms of previously defined building blocks.  This allows for 

handling of parameter restrictions across models. For example, if a ′β X  appears in multiple 
models (with the same coefficients β ), it only needs to be defined once (“define regressor 
set”) and may be subsequently used in multiple model specifications.   

Each equation in your model is specified in one or more model statements.  Even two or more 
equations that are part of one system of simultaneous equations must be specified in separate 
model statements.  (Indeed, strictly speaking, we should speak of equation statements rather than 
model statements.)  Correlation across equations follows from correlated residuals, which are 
defined as part of distributions outside the model specifications. 

The syntax of model statements is: 

<type> model; 
   [data structure=n;] 
   [{keep|drop} if condition;] 
   [numerator;]  [denominator;] 
   <outcome specification> 
   <explanatory specification> 

The current version of aML support the following types of models: continuous, hazard, (ordered) 
probit/logit and (negative) binomial.  This section describes model specification features that are 
common to all model types.  Section 13.3.1 documents data structure statements, keep/drop 
conditions, and numerator/denominator statements, which are identical for all model types.  
Section 13.3.2 discusses the use of building blocks in explanatory specifications, i.e., 
specifications of the “right-hand-side” of your model equations.  Direct and indirect references to 
building blocks are described in Sections 13.3.3 and 13.3.4, respectively, and Section 13.3.5 
documents building block interactions.  Features that are specific to individual model types are 
documented in subsequent sections. 
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13.3.1. Options Common to All Model Statements  

This section describes several features that are common to all models, including data structure 
specifications, keep and drop statements, and likelihood formulation in the presence of 
conditioning model statements.   

Statement Description 

data structure = n; Data structure number to which the model applies.  Mandatory if 
data are organized in data structures, and not allowed if data are 
not organized in data structures. 

[keep if condition;] Keep only data for which the condition is true (i.e., equal to 1) 

[drop if condition;] Drop data for which the condition is true (i.e., equal to 1) 

[numerator;]  Use model statement in numerator of likelihood function 

[denominator;] Use model statement in denominator of likelihood function, for 
conditioning events 

data structure = n; 

As discussed in Section 9.2, your data may be organized in data structures.  A data structure is 
a subset of variables in the data.  It contains both outcome variables and explanatory variables.  
For a number of reasons it may be convenient or necessary to create subsets of variables into 
distinct data structures.  Data structures do not have a name; they may be identified by a unique 
strictly positive integer number instead. 

If your data are organized in data structures, you must specify the data structure which 
contains the outcomes that you wish to model.  This is done in the “data structure=n” 
statement, where n is the data structure number.  The data structure statement is irrelevant if your 
data are not organized in data structures. 

We stated above that each equation in your model must be specified in one or more model 
statements.  Why not in just one model statement?  The answer lies in the way you organized your 
data.  If you decided to assign, say, males and females into separate data structures, but the same 
model equation applies to both sexes, then you need to specify your model twice, once for each 
data structure.  In other words, you need a model statement for each data structure that contains 
your outcome of interest.  (Some people like to create many separate but similar data structures.  
The use of macros may then help reduce user errors in repetitive model specifications; see Section 
16.2.) 
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{keep | drop} if condition; 

Model specifications may contain a keep or drop option.  This is useful if you wish to include 
only a subset of outcomes in the model, or if you want to specify different models for various 
outcome types. 

The “condition” must be a numerical expression which evaluates to either zero or one.  It 
may contain any of the operators that aML’s expressions allow (Section 13.17), including the 
Boolean “and”, “or”, and “not” (but excluding “spline”, as it would evaluate to a vector).  
Examples include: 

keep if sex==1; 
drop if (sex!=1); 
keep if (age>=18 and male==1); 
drop if (x*log(y*min(v,w))<z); 

Note that equality tests require double equality signs (“==”).  Also note that, in the second through 
last example, we enclosed the conditions in parentheses.  This is not required, but we like it to 
improve readability. 

Keep/drop conditions may help keep your data compact.  For example, suppose you wish to 
estimate a two-equation model of earnings.  The first equation is a probit for whether someone 
earned anything at all; the second is a continuous model to explain the amount (in logarithmic 
form).  The equations may be specified as follows: 

probit model; 
   outcome = (earnings>0); 
   model = ...; 
 
continuous model; keep if earnings>0; 
   outcome = log(earnings); 
   model = ...; 

Many more applications are possible, including switching regressions models. 

For logical reasons, variables in keep/drop statements may only be at the level of the outcome 
or higher (more aggregated).  Consider an example of school test scores, where level 1 
corresponds to schools, level 2 to students, level 3 to years in school, and level 4 to individual 
tests.  Whether a student passed to the next grade level is a level 3 variable.  It would not make 
sense to use a level 4 variable (such as the subject area of an individual test) in a keep or drop 
statement. 

[numerator;] [denominator;] 

In some applications, it may be necessary to condition on the probability (likelihood) of 
inclusion in the sample.  A classic example is truncated regression; the continuous dependent 
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variable in a standard regression model is observed only if it exceeds (or falls below) a known 
threshold, and is not included in the data otherwise.  For example, in a sample of recent car buyers, 
expenditures on cars are always positive.  Individuals with zero expenditures (non-owners) are not 
in the sample.  The likelihood function for each observation in this type of model is given by the 
ratio of the normal density to the probability of sample inclusion conditional on the values of the 
explanatory variables.  This concept of conditioning on the probability of sample inclusion, by 
dividing by its probability, is generalized for all model statements with a “denominator” 
statement to indicate that it is a conditioning event.  Its probability (likelihood) enters in the 
denominator of the overall likelihood. 

By default, of course, the likelihood of a module enters into the numerator of the overall 
likelihood function.  You may explicitly specify “numerator”; the result is the same as when you 
omit it.  In some cases, you may want a module’s likelihood to enter both into the numerator and 
the denominator of the overall likelihood function.  This is achieved by specifying both 
“numerator” and “denominator”.  In that case, “numerator” must be explicitly specified. 

Consider the example of a truncated regression of car expenditures.  This may be modeled as: 

probit model; 
   denominator;  /* condition on prob of spending something */ 
   outcome = (expen>0); 
   model = ...; 
 
continuous model; 
   outcome = expen; 
   model = ...; 

The sample only includes recent car buyers, so the car expenditures variable expen is always 
strictly positive.  It may seem silly to specify “outcome=(expen>0)” in the probit model; why 
not simply “outcome=1”?  The answer is that, as explained below, outcomes must always be 
specified in terms of variables, not constants.  aML needs to determine the level of the outcome, so 
that it knows how many replications to model.  A constant would not provide that information. 

Consider a more complex example.  You wish to model the hazard of divorce using a sample 
of individuals that were married at the time of the first interview, t1 , and that were interviewed 
several more times.  Without heterogeneity, the likelihood that the marriage survived through time 
t may be written as 

L t
S t t
S t t

S t t S t t
S t t

S t tb g b gb g
b g b g
b g b g= = =

|
|

| |
|

|0

1 0

1 1 0

1 0
1  

where t0  is the wedding date and S t t| 1b g  is the value of the survival function at time t, given that 
the respondent was married at timet1 .  The period from wedding date to the first interview, t0  to 
t1 , drops out of the equation and may be ignored.  But suppose you wish to control for unobserved 
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heterogeneity.  With heterogeneity component ε , the conditioning probability does not cancel 
anymore: 

L t
S t t dF

S t t dF

S t t S t t dF

S t t dF
b g b g b g

b g b g
b g b g b g
b g b g= =z

z
z
z

| ,

| ,

| , | ,

| ,
0

1 0

1 1 0

1 0

ε ε

ε ε

ε ε ε

ε ε
 

where F εb g  is the cumulative density function of heterogeneity component ε , and all integrals 
run from −∞  to ∞ .  The likelihood function cannot be simplified anymore, and the probability 
that the marriage survived from wedding date to first interview must be modeled.  (It is a hazard 
outcome which is always censored.)  You could create two data structures 100 and 200 for the 
period from wedding date to first interview and for the period from wedding date to t (dissolution, 
death, widowhood, or last interview), respectively, and specify the model as follows: 

hazard model; data structure=100;  /* wedding to interview */ 
   denominator; 
   <other statements> 
 
hazard model; data structure=200;  /* wedding to t */ 
   numerator;  /* may also omit this statement */ 
   <other statements> 

This specification corresponds to S t t dF S t t dF| , | ,0 1 0ε ε ε εb g b g b g b gz z  in the equation above.  

Equivalently, you could create two data structures 100 and 300 for the period from wedding date 
to first interview and for the period from first interview to t (dissolution, death, widowhood, or last 
interview), respectively, and specify the model as follows: 

hazard model; data structure=100;  /* wedding to interview */ 
   numerator; denominator; 
   <other statements> 
 
hazard model; data structure=300;  /* interview to t */ 
   numerator;  /* may also omit this statement */ 
   <other statements> 

This specification corresponds to S t t S t t dF S t t dF| , | , | ,1 1 0 1 0ε ε ε ε εb g b g b g b g b gz z . 
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13.3.2. Use of Building Blocks in Models 

Each model (equation) consists of an outcome (dependent variable) and a explanatory portion 
(independent variables, right-hand-side of the equation).  The right-hand-side of the equation must 
be specified in terms of building blocks that have been defined elsewhere:  regressor sets, 
(integrated) residuals, duration splines, parameters, regressor splines, (inverse) matrix elements, 
and simple variables.  This section describes the rules governing the use of building blocks in 
model specifications.   

The right-hand-side of hazard, continuous, and (ordered) probit/logit equations is specified as 
follows: 

model = <building block {+|-} building block {+|-} ...>; 

The syntax is slightly different in binomial, Poisson, negative binomial, multinomial probit, and 
multinomial logit models, but in all cases, the explanatory portion(s) of the model consist of one 
or more building blocks that are added or subtracted.  Building blocks may also be interacted with 
each other, thereby allowing for nonlinear models, models with random coefficients, and more. 

A single building block may be used in multiple data statements, i.e., it may enter in multiple 
equations.  This enables you to impose restrictions on coefficients across equations. 
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13.3.3. Directly Referenced Building Blocks 

This section documents how building blocks may be “directly referenced” in model 
statements.  A directly referenced building block is a building block that enters a model 
unconditionally and that is used by specifying its name.  By contrast, indirectly referenced 
building blocks enter models conditional on the value of a data variable; see Section 13.3.4.   

The following documents direct referencing of regressor sets, parameters and (inverse) matrix 
elements , residuals and integrated residuals, duration splines, and regressor splines. 

Regressor Sets 

regressor set regsetname 

Regressor sets may be used in all model specification statements.  Think of a regressor set as 
a ′β X .  The same regressor set may enter in any combination of models at the same time.  
Multiple regressor sets may be used in the same model specification statement.  Regressor sets 
may be interacted with each other and with all other building blocks. 

Parameters and (Inverse) Matrix Elements 

parameter parname 
parameter matrixname(i,j) 
parameter inverse(matrixname(i,j)) 

Parameters may be used in all model specification statements.  The same parameter may enter 
in any combination of models at the same time.  Multiple parameters may be used in the same 
model specification statement.  Parameters may be interacted with each other and with all other 
building blocks.  The rules for matrix elements and inverse matrix elements are the same as for 
parameters. 

Residuals and Integrated Residuals 

residual(draw=varname, reference=resname) 
integrated residual(draw=varname, reference=resname) 

Where “varname” may be an expression possibly involving multiple variables.  It may also be a 
constant.  For logical reasons, the draw variable must be at at least the same level as the outcome 
variable, i.e., at the same level or more aggregated. 

(Integrated) residuals may enter in all model specifications, including incidence but not 
dispersion specifications in negative binomial models.  The same residual may enter in multiple 
model specification.  Multiple residuals may be used in the same model specification.  Residuals 
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may not be interacted with each other.  They may also not be interacted with duration splines.  
Other interactions are allowed. 

Residuals may come from normal, finite mixture, ARMA, and CAR distributions.  Finite 
mixture residuals must always be integrated out.  ARMA and CAR residuals may never be 
integrated-out numerically.  Normal residuals must be integrated-out numerically in models for 
which no closed-form solution to the likelihood exists:  hazard, (ordered) logit, and (negative) 
binomial models.  In continuous and (ordered) probit models, you have a choice between 
computing the closed-form solution or numerical integration.  However, if the overall covariance 
matrix of (ordered) probit models is not diagonal and of dimension four or higher, numerical 
integration is required. 

It is very important to specify which residuals are independent and which share the same 
draw.  This is explained in detail in Section 13.3.6.  In summary, independence is specified 
through draw variables.  If the same residual (heterogeneity component) applies to multiple 
outcomes, then the corresponding draw variables must have the same value.  By contrast, if 
residuals are independent, their draw variables must take on distinct values.  Only residuals in the 
same observation may be correlated, i.e., residuals in different observations are always 
independent regardless of their draw variables.  In addition to the syntax above, aML supports a 
way to specify that all draws are independent: 

residual(draw=_iid, reference=resname) 
integrated residual(draw=_iid, reference=resname) 

Note the “_iid” keyword.  It is not a variable.  The innovation term of ARMA and CAR residuals 
must always be drawn independently (draw=_iid). 

Let’s take an example.  In an analysis of test scores, you may wish to specify a (level 1) 
school effect, a (level 2) student effect, a (level 3) schooling year effect, and a (level 4) test effect; 
the latter captures whatever is not absorbed by covariates and higher-level residuals and is often 
called the “transitory” effect.  Denote schools, students, schooling years, and tests by subscripts i, 
j, k, and l, so that the model for test score Yijkl  is: 

Y X uijkl ijkl i ij ijk ijkl= ′ + + + +β δ ε η . 

Your aML data contain school IDs (schoolID), student IDs (personID), and school years 
(year).  Student IDs are unique within school, but may contain duplicates across school.  School 
year is, say, grade level, which ranges from 1 to 12.  Test scores are in level 4 variable “score”.  
The model may be specified as: 

define regset BetaX; var = ...; 
define normal distribution; dim=1; name=delta; 
define normal distribution; dim=1; name=eps; 
define normal distribution; dim=1; name=eta; 
define normal distribution; dim=1; name=u; 
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continuous model; 
   outcome = score; 
   model = regset BetaX + 
   res(draw=1, ref=delta) + 
   res(draw=personID, ref=eps) + 
   res(draw=100*personID+year, ref=eta) + 
   res(draw=_iid, ref=u); 

We wrote “draw=1” in the representation of δ i .  The unit of observation is a school, and there is 
thus only one draw for δ i  in any observation.  We could have written “draw=10” or “draw=143” 
and even “draw=schoolID” with same result; all that matters is that the draw is the same for all 
replications (test score equations).  For ε ij , we wrote “draw=personID”, as this will be the same 
for all tests of a particular student, and different across students.  For ηijk , we wrote 
“draw=100*personID+year”.  If we had written “draw=year”, the same draw would apply to 
all students in the same grade level.  The addition of “100*person” makes the draw unique 
across years and students.  (The highest value of year is 12, so that “100*personID+year” 
uniquely maps personID and year.  We could have chosen any number above 12, such as 
“13*personID+year”.)  For uijkl , we wrote “draw=_iid”.  We could have created some other 
unique number, such as “10000*personID+100*year+testnum”, where testnum is the test 
number (testnum<100), but shorthand “_iid” is more convenient. 

Duration Splines 

duration spline(origin=varname, reference=splinename) 

Where “varname” may be an expression involving possibly multiple variable names.  It may also 
be a constant.  For logical reasons, the origin variable must be at at least the same level as the 
outcome variable, i.e., at the same level or more aggregated. 

Spline building blocks may be used as duration splines or regressor splines (see below).  
Duration splines may only be used in hazard models.  They serve to specify the baseline duration 
pattern (baseline log-hazard).  The same spline may enter in any combination of hazard models at 
the same time.  There must be at least one duration spline in a hazard model.  If there are multiple 
duration splines, they combine additively to form the overall baseline duration pattern.  Duration 
splines may not be interacted with each other.  They may be interacted with parameters, regressor 
sets, and regressor splines. 

Each spline corresponds to a certain pattern, as defined by the user with nodes and slopes.  
The pattern may start at the beginning of the hazard spell, or it may start earlier or later.  In aML 
parlance, each duration dependency corresponds to a “clock” which may start ticking before, at, or 
after the beginning of the hazard spell.  The start of the clock is controlled by the origin variable.  
Positive origins indicate that the clock started ticking before the beginning of the spell; zero 
corresponds to the beginning of the spell, and positive values indicate that the clock started ticking 
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sometime during the spell.  If the origin variable is negative and larger in absolute value than the 
end of the spell, the duration spline essentially does not enter the model.  Different spline patterns 
are individually identified because their respective clocks start ticking at different points in time. 

Even though the origin of the spline may be sometime during the spell, its effect by default 
extends backward as well as forward.  To ensure that a spline “kicks in” during the spell, specify 
option “effect=right” in the definition of the spline (page 293).   

Regressor Splines 

regressor spline(variable=varname, reference=splinename) 

Where “varname” may be an expression involving possibly multiple variable names.  It may also 
be a constant.  For logical reasons, the variable to be transformed must be at at least the same level 
as the outcome variable, i.e., at the same level or more aggregated. 

Regressor splines have the same effect as splines that are defined as part of a variable list in 
regressor sets.  In hazard models, the difference with duration splines is that in regressor splines, 
the variable of which the spline transformation is taken is a constant, whereas in duration splines, 
the variable continuously increases with the duration of the spell.  The variable to which the spline 
transformation is applied may be time-varying, resulting in a time-varying set of variables, but the 
changes over time are discreet.  By contrast, duration splines result in smoothly changing patterns 
over the duration of a hazard spell.  Regressor splines result in proportional shifts of the baseline 
hazard; duration splines are part of the baseline hazard.  There is rarely a good reason to use 
regressor splines.  For additional details see Section 13.2.3. 

Variables 

varname 

New in Version 2 is the ability to enter variables on the right-hand-side of equations, without 
coefficient.  For example, the following model: 

i i i iy x z uβ ′= + +  

may be expressed as the sum of a regressor set ( ixβ ′ ), a variable ( iz ), and a residual ( iu ).  The 
key difference between a variable that enters an equation directly and one that enters by inclusion 
in a regressor set is that the latter is multiplied by a regression parameter that can be estimated. 

Inclusion of a variable without coefficient is not often very meaningful.  It may, for example, 
fulfill the role of an exposure variable in a Poisson or negative binomial model (e.g., footnote 15 
on page 63).  More commonly, a variable may be interacted with other building blocks, notably 
residuals in random coefficients models (Section 5.6). 
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13.3.4. Indirect Referencing of Building Blocks 

This section documents how building blocks may be “indirectly referenced” in model 
statements.  An indirectly referenced building block enter models conditional on the value of a 
data variable.  The syntax always involves a reference variable (refvar) specification: 

regressor set (refvar=varname) 
parameter (refvar=varname) 
residual(draw=varname, refvar=varname) 
integrated residual(draw=varname, refvar=varname) 
duration spline(origin=varname, refvar=varname) 
regressor spline(variable=varname, refvar=varname) 

where “varname” may also be an expression potentially involving multiple variables.  For logical 
reasons, the variable(s) must be at at least the level of the outcome, i.e., at the same level or more 
aggregated. 

Indirect referencing enable the selection of building blocks on the basis of characteristics of 
the outcome of interest.  For example, in a probit model suppose you wish to specify different 
regressor sets for each of four educational categories.  The categories are distinguished by variable 
“educ” which may be 1, 2, 3, and 4.  One approach, using direct referencing, is: 

define regset HSDropout;   ref=1; var = ...; 
define regset HSGraduate;  ref=2; var = ...; 
define regset SomeCollege; ref=3; var = ...; 
define regset CollegeGrad; ref=4; var = ...; 
 
probit model; keep if educ==1; outcome = ...; 
   model = regset HSDropout + ...; 
probit model; keep if educ==2; outcome = ...; 
   model = regset HSGraduate + ...; 
probit model; keep if educ==3; outcome = ...; 
   model = regset SomeCollege + ...; 
probit model; keep if educ==4; outcome = ...; 
   model = regset CollegeGrad + ...; 

Alternatively, you may use indirect referencing and select the appropriate regressor set on the fly: 

probit model; 
   outcome = ...; 
   model = regset (refvar=educ) + ...; 

Instead of four model statements, there is only one.  Note that the names of the regressor sets are 
no longer used.  (Indeed, they may be omitted from their definitions, though it may be good to 
leave them there for your own documentation purposes.)  Instead, the regressor sets’ reference 
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numbers are used.  For each probit outcome, aML evaluates reference variable educ and attempts 
to find its value among the reference numbers of all define regressor sets.  The regressor set with 
matching reference number is used in the equation. 

The example applies equally to all other types of models and all other types of building blocks 
that may be defined with reference numbers. 

Indirect referencing requires that candidate building blocks have been defined with reference 
numbers.  Almost all building blocks may be named (with a 12-character name) and/or identified 
by reference numbers (“ref=n...n”).  Reference numbers must be strictly positive integers.  
You may assign as many reference numbers to any one building block as you wish.  (There is an 
internal maximum, but it may be increased—see “option maximum number of reference 
numbers” on page 279.) 

What if the reference variable evaluates to a number which does not appear among reference 
numbers?  There are two possibilities.  First, the reference variable is nonzero:  aML then aborts 
with an instructive error message.  Second, the reference variable is zero:  aML then omits the 
building block from the equation.  Indirect referencing thus allows for conditional inclusion of 
building blocks. 

! If a reference variable evaluates to zero, its building block is excluded from the model 
specification.  If the building block is interacted with other building blocks (Section 
13.3.5), all interacted blocks are also excluded. 

This feature is particularly useful when the number of building blocks varies across equations.  
For example, you wish to include the effect of the death of an older child on the hazard of 
conceiving a next child to determine whether there is evidence of child replacement.  You include 
a spline duration dependence which starts operating (kicks in) at the moment that a child in the 
family dies.  However, fortunately, not all families experience child mortality in every conception 
spell (birth interval).  The replacement effect thus enters conditionally on the death of a child.  
You could even include multiple conditional replacement effects, corresponding to multiple 
deaths, to account for potentially multiple infant’s or child’s mortality in one family. 

Indirect referencing may involve expressions rather than just reference variables.  The above 
example specified separate regressor sets by education.  Suppose that in addition to educ, one 
wants interactions by sex as well.  The data contain a variable sex which is 1 for males and 2 for 
females, say.  The number of possibilities is now eight, and we select reference numbers that are 
unique combinations of educ and sex: 

define regressor set; ref = 11; var = ...; 
define regressor set; ref = 12; var = ...; 
define regressor set; ref = 13; var = ...; 
define regressor set; ref = 14; var = ...; 
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define regressor set; ref = 21; var = ...; 
define regressor set; ref = 22; var = ...; 
define regressor set; ref = 23; var = ...; 
define regressor set; ref = 24; var = ...; 

Accordingly, the model statement may include: 

model = regset (refvar=10*sex+educ) + ...; 



13.3.  Model Specifications—General  

 

331

R
ef

er
en

ce
 M

an
ua

l 

13.3.5. Interactions of Building Blocks 

You may interact building blocks and estimate an extraordinarily rich class of models.  For 
example, interactions of multiple regressor sets enable nonlinear models; interactions of regressor 
sets and residuals enable modeling heteroskedasticity; interactions of variables and residuals 
enable random coefficients models; interactions of parameters and inverse matrix elements enable 
estimation of structural parameters in systems of simultaneous equations.  See Section 5 for a 
detailed discussion of these types of advanced models. 

! Parameters, regressor sets, regressor splines, and variables may be freely interacted 
with each other, and with duration splines, residuals, and integrated residuals.  
Duration splines and (integrated) residuals may not be interacted with each other. 

Vectors, which never directly enter model specifications, may not be interacted with any other 
building block.  Examples of permissible interactions include: 

par Lambda * par Gamma 
par Lambda * regset BetaX 
par Lambda * varname 
regset BetaX1 * regset BetaX2 
par Lambda * res(draw=year, ref=eps) 
regset BetaX * intres(draw=year, ref=eps) 
varname * res(draw=year, ref=eps) 
par Lambda * durspline(origin=age, ref=AgeEffect) 
regset BetaX * durspline(origin=age, ref=AgeEffect) 
par Lambda * regset BetaX * res(draw=year, ref=eps) 

Et cetera.  There is no hard limit to the number of interaction terms.  Regressor splines and 
(inverse) matrix elements may be used in the same way as parameters and regressor sets.  The 
examples all use directly referenced building blocks, but the same rules apply to indirectly 
referenced building blocks. 

! If the reference variable of an indirectly referenced building block evaluates to zero, 
that building block does not enter the equation.  All other building blocks with which it 
is interacted then also drop out of the equation. 
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The best way to interpret these interactions is to view a regressor set as ′β X ; this entity is 
multiplied by a parameter, say, λ , so that λ β′Xb g  enters the model:  all regressor coefficients β  

are scaled.  Similarly, the interaction of two regressor sets yields ′ ′β β1 1 2 2X Xb gb g .   
The interaction of a parameter with a residual or integrated residual ε  simply means that not 

ε , but λε  enters the model specification.  Similarly, the interaction of a regressor set ′β X  and a 
residual ε  yields ′β εXb g .  This allows for heteroskedasticity, i.e., it enables the user to let the 
standard deviation of the variance component be a function of regressors.  Under most 
circumstances, some normalization must be imposed, for example, by fixing the standard 
deviation of the residual to one.  For example, suppose you want to test whether the standard 
deviation of a variance component has remained constant over time.  If you suspect that the 
standard deviation has increased or decreased linearly, you can define a regressor set with the 
number “1” and variable time.  If a more complicated time pattern is suspected, the regressor set 
should contain the number “1” and a spline transformation of time, e.g., spline(time, ...).  
Or perhaps you suspect a quadratic development:  “1 time time*time”.  Note that the value of 
the regressor set ′β X  affects the standard deviation linearly; the variance is related to the square 
of ′β X .  Also note that the standard deviation is equal to the absolute value of the regressor set; if 

′β X  is negative, the signs of some correlation coefficients are implicitly reversed. 

The interaction of a variable and a residual yields factors like zε .  This type of interaction is 
particularly useful in random coefficients models. 

A spline duration dependence may be expressed as ′γ T tb g , where γ  is a vector of slopes and 

T tb g  is a vector of linear spline transformations of the duration at any point t during the period of 
risk.  (We are ignoring the spline intercept term, if any.)  Interaction with a parameter or regressor 
set then yields λ γ ′T tb gc h  or ′ ′β γX T tb g b gc h , i.e., all slopes (and the intercept, if any) are multiplied 
by a parameter or regressor set.  This tilts the duration dependence:  the slope on each segment 
between nodes is multiplied by λ  or ′β X .  The intercept is also multiplied by λ  or ′β X .  There 
is an important restriction to the interaction of a regressor set and a duration spline:  the regressor 
set may not contain variables defined below the outcome level (i.e., may not be time-varying).  
Only variables defined at at least the level of the outcome are permissible, so that ′β X  is constant 
for the entire period of risk.  Note that the interaction of a regressor set with a regressor spline is 
different from the interaction of a regressor set with a duration spline: in the latter case, the entire 
term is part of the baseline hazard function, whereas the former case only shifts the baseline 
hazard. 
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! In hazard models, interactions of regressor sets with duration splines or with integrated 
residuals are subject to the restriction that the regressor set not contain variables 
defined below the outcome level.  Only variables defined at or above the level of the 
outcome are permissible, so that ′β X  is constant over the entire spell.  Interactions of 
regressor splines and regressor sets are not subject to this restriction. 

 

! The order in which interaction terms appear is subject to the rule that duration splines 
and (integrated) residuals must be listed after parameters, regressor sets, and regressor 
splines. 

In other words, 

durspline ... * par ...  
intres ... * regset ... 

will result in an error message, but 

par ... * regset ... * durspline ... 
par ... * regset ... * res ... 

are permissible and equivalent to: 

regset ... * par ... * durspline ... 
regset ... * par ... * res ... 

13.3.6. Correlated and Independent Residual Draws 

Residuals may be included in equations through the following specification: 

res(draw=drawvar, ref=resname) 

where drawvar is the name of a data variable or expression, and resname is the name of the 
residual.  Residuals may also be indirectly specified: 

resname(draw=drawvar, refvar=refvar) 

where refvar is the name of a data variable or expression.  In multilevel and multiprocess 
models, there may be many equations and potentially very many residuals.  It is critical to 
correctly specify which residuals are correlated with other residuals, and which residuals are 
independent.  The basic rule is: 
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! Residuals are correlated if and only if (1) they were defined as part of the same 
distribution, and (2) they have the same draw numbers. 

The draw numbers must be explicitly specified by a draw variable or expression.  In 
particular, residuals with “draw=_iid” are always independent from every other residual.  We 
could add a third condition, namely that the residuals pertain to outcomes in the same observation.  
By the definition of an observation, nothing is correlated across observations. 

It may be helpful to think of a draw as a realization of the residual.  Each time an outcome is 
observed, one or more residuals have been realized and combined with regressors to form the 
outcome.  Different realizations are different “draws.” 

If a residual is specific to all outcomes of an observation, we tend to specify “draw=1”.  This 
does not mean that the residual takes on value 1; it means that the residual takes on a draw that is 
uniquely identified as draw number 1.  “Draw=1” ensures that the residual has the same draw 
number in all equations in which it appears.  Key is here that draw is always the same, i.e., there is 
only one realization of this residual.  We could have specified “draw=536” or “draw=_id” or 
any other expression that evaluates to the same number for all equations of an observation.  This 
illustrates another rule: 

! The actual draw number is irrelevant.  The only thing that matters is whether the draw 
number is the same as draw numbers in other equations. 

If a residual is specific to a subset of equations within an observation, we tend to use a draw 
variable.  The variable must have the same number for all equations in the subset of interest, and 
other draw numbers outside the subset.   

Example 1 

To focus thoughts, consider a simple continuous outcome model with three levels: 

ijt ijt i ij ijtY X uβ ε η′= + + + , 

where i denotes, say, an individual (level 1), j a job (level 2), and t a year (level 3).  The unit of 
observation is an individual.  We observe annual data over a career with potentially many jobs per 
individual and potentially multiple years on each job.  The outcome of interest is annual earnings 
( ijtY ) of person i on job j in year t.  ijtX  represents explanatory covariates; iε  represents 
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unobserved heterogeneity specific to the individual (ambition, intelligence, …); ijη  represents 
unobserved heterogeneity specific to the job (quality of worker-job match, non-pecuniary job 
aspects, …); and ijtu  captures residual variation. 

To facilitate the discussion, suppose the first observation is an individual for whom annual 
earnings are observed over three jobs.  On these three jobs, we observe two, three, and one annual 
earnings figures, respectively.  There are thus six outcomes to be explained, corresponding to the 
following six equations: 

111 111 1 11 111

112 112 1 11 112

121 121 1 12 121

122 122 1 12 122

123 123 1 12 123

131 131 1 13 131

Y X u
Y X u
Y X u
Y X u
Y X u
Y X u

β ε η
β ε η
β ε η
β ε η
β ε η
β ε η

′= + + +
 ′= + + +
 ′= + + +
 ′= + + +
 ′= + + +


′= + + +

 

or:    

111 111

112 112
11

121 121
1 12

122 122
13

123 123

131 131

1 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 0
1 0 0 1

Y X
Y X
Y X
Y X
Y X
Y X

η
β ε η

η

       
       
                ′= + + +                

        
                    

111

112

121

122

123

131

1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

u
u
u
u
u
u

  
  
  
  
  
  
  
      

. 

Note that, for this first observation, there is only one ε , three distinct η ’s, and six distinct u’s.  In 
draw-terms, there is only one draw of ε , three of η , and six of u .  While we know how many 
distinct values (draws) there are, we do not know their values.  The task is to tell aML that (1) all 
equations of this first observation get the same ε ; (2) that the first two equations get one draw of 
η , the next three another, and the last one a third value of η ; and (3) that all equations get a 
different u. 

More generally, we need to specify the residual structure i ij ijtuε η+ +  in the aML control file.  
This requires that the data contain a variable that is unique to each job, say, jobid (“job ID”).  
The control file may then contain: 

define regressor set BetaX; var = …; 
define normal distribution; dim=1; name=eps; 
define normal distribution; dim=1; name=eta; 
define normal distribution; dim=1; name=u; 
 
continuous model; 
   outcome = y; 
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   model = regset BetaX + 
      res(draw=1, ref=eps) + 
      res(draw=jobid, ref=eta) + 
      res(draw=_iid, ref=u); 

Exactly what do the draws in these residual specifications mean?  The first, “res(draw=1, 
ref=eps)” states that residual eps enters the model with the same draw (value) in every 
equation.  That value is not equal to 1.  The only relevant thing about “draw=1” is that the draw is 
the same for every equation (within an observation; across observations, all residuals are by 
definition uncorrelated).  We could have written “draw=536” or “draw=3*55-10” or anything 
else that evaluates to a constant number for all equations of a specific observation.  Some people 
write “draw=_id”, where _id is the built-in variable denoting observation ID.  This, too, is 
constant for all equations within observation.  Again, the draw is not 1 or 536 or whatever; the 
draw specification serves merely to identify which equations get the same ε . 

The second residual specification, “res(draw=jobid, ref=eta)” tells aML that all 
equations with the same job ID get the same draw.  Suppose the jobs are numbered 1, 2, and 3.  
The first two equations have jobid=1, the next three have jobid=2, and the last has jobid=3.  
aML counts the number of distinct jobid values (three) and acts as-if there are three independent 
distributions of η  (namely corresponding to 11η , 12η , and 13η , above).  It does not matter what 
values jobid takes on; all that matters is that the first two equations have the same jobid, the 
next three the same jobid (and different from the first value), and the last yet another value.  
These values could be 10662, 7884, and 8770. i.e., they need not be ordered.   

The third residual specification, “res(draw=_iid, ref=u)” indicates that all values of u 
are independent from each other.  If all six earnings observations pertain to different calendar 
years, we could write “draw=year”.  Specifying “draw=_iid” is just shorthand to ensure that all 
draws are independent.   

The above equation may be written more compactly as * *
1 1 1 1 1uY X uε ηβ ε η′= + Λ + Λ + Λ , 

where Λ ’s are load matrices and asterisks reflect multiple independent draws of residuals.  The 
overall covariance matrix is: 

2

2
2

2
2 2

2
2

2

2

0 0 0 0 0
0 0 0 0 0

0 0
0 0 0 0 0

0 0
0 0 0 0 0

0 0
0 0 0 0 0
0 0 0 0 0

u

u

u
e u u

u

u

u

η

ε ε η η η

η

σ
σ

σ
σ

σ σ
σ

σ
σ

σ

 
 
     ′ ′ ′Λ Λ + Λ Λ + Λ Λ  
  

   
  
 

, 

which further illustrates that there is one draw of ε , three independent draws of η , and six 
independent draws of u.  Again, we do not know (and do not need to know) what the various 
realizations (values) are, just that there are one, three, and six, respectively. 
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Draws in Multiprocess Settings 

So far, the discussion covered a multilevel setting with a single process (annual earnings).  
Now consider various extensions to multiprocess settings.   

Suppose educational attainment is among the explanatory covariates.  Intelligent individuals 
( 0iε > ) are likely to obtain more education than their less-intelligent counterparts, so that 
educational attainment may be positively correlated with an unobservable in the earnings equation.  
This would cause the estimated effect of education on earnings to be positively biased.  Suppose 
we have a test score for every individual, iT .  We jointly estimate: 

ijt ijt i ij ijt

i i i

Y X u
T X

β ε η
α δ

′= + + +
 ′= +

 

where iε  and iδ  both capture aspects of intelligence and are may therefore be correlated.  The 
control file would contain something like: 

define normal distribution; dim=2; 
   name=eps; 
   name=delta; 
 
continuous model;   /* Model for annual earnings */ 
   outcome = y; 
   model = ... + res(draw=1, ref=eps) + ...; 
 
continuous model;   /* Model for test score */ 
   outcome = t; 
   model = ... + res(draw=1, ref=delta) + ...; 

Key is that eps and delta get the same draw.  Equivalently, we could write 
“res(draw=536, ref=eps)” and “res(draw=536, ref=delta)”, but not “res(draw=1, 
ref=eps)” and “res(draw=536, ref=delta)”.  Recall the basic rule: 

! Residuals are correlated if and only if (1) they were defined as part of the 
same distribution, and (2) they have the same draw numbers. 

In the example, there is only one test score, i.e., only one equation per observation.  
Alternatively, there could be a battery of scores, each explained by some covariates, a common 
residual iδ , and independent transitory residuals.  The specifications of iε  and iδ  would remain 
as above. 
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Now suppose a job characteristic that enters as explanatory covariate is correlated with 
unobservable job characteristics.  (It is difficult to think of a good example; perhaps the 
explanatory covariate is occupation, and perhaps beach lifeguards and park rangers earn less but 
have pleasant unobservable job characteristics.)  For each job, we jointly estimate a model 
explaining that job characteristic with the model of annual earnings (and possible also joint with 
the test score model): 

;
,

ijt ijt i ij ijt

ij ij ij

Y X u
C X

β ε η
γ κ

′= + + +
 ′= +

 

where ijη  and ijκ  may be correlated.  The control file would contain something like: 

define normal distribution; dim=2; 
   name=eta; 
   name=kappa; 
 
continuous model;   /* Model for annual earnings */ 
   outcome = y; 
   model = ... + res(draw=jobid, ref=eta) + ...; 
 
continuous model;   /* Model for job characteristic */ 
   outcome = c; 
   model = ... + res(draw=jobid, ref=kappa) + ...; 

Residuals eta and kappa have the same draw variable, jobid, ensuring proper correlations 
across equations.  Data for the earnings and job characteristics models may be in different data 
structures, as long as both data structures contain a consistently coded jobid variable. 

Finally, there may be correlation at the transitory (annual) level, i.e., with ijtu .  For example, 
we only observe annual earnings if the individual is working, so we jointly estimate a annual labor 
force participation.  This amounts to a multilevel extension of the Heckman model: 

*

;
,

ijt ijt i ij ijt

it it it

Y X u
P X v

β ε η
π

′= + + +
 ′= +

 

where *
ijtP  is the probit-propensity that individual i works in year t and ijtu  may be correlated with 

itv .  (This example for illustration only; conditional on earnings, the probit residuals may be 
correlated, which may cause troubles if there are more than three years per individual.)  The 
control file would contain something like: 

define normal distribution; dim=2; 
   name=u; 
   name=v; 
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continuous model;  keep if (p>0);  /* Model for annual earnings 
*/ 
   outcome = y; 
   model = ... + res(draw=year, ref=u); 
 
probit model;   /* Model for labor force participation */ 
   outcome = p; 
   model = ... + res(draw=year, ref=v); 

Careful!  Above, we wrote “res(draw=_iid, ref=u)”, indicating that all u’s were 
independent.  If we were to do so here as well, the u’s would also be independent of the v’s, 
regardless of the draw specification of v’s.  We can only obtain correlation by explicitly tying the 
residuals together with common draws.  (If there were earnings on multiple jobs for any one year, 
the “draw=year” specification would not suffice.) 

Example 2 

Consider another example.  In a study of test scores in a sample of schools (level 1) with 
multiple students per school (level 2), multiple years in school per student (level 3), and multiple 
tests per school year (level 4), students may be identified by a student ID, student.  A residual 
that is specific to the school may have “draw=1”; residuals that are student-specific should have 
“draw=student”.  Student IDs are unique within schools, so outcomes from different students 
will have different draws.  It does not matter that student IDs are not unique across schools, 
because different schools belong to different observations, and everything across observations is 
by definition uncorrelated.  It also does not matter that some students may have student=1.  It will 
not be related to the draw=1 of school-specific residuals, because the school and student residuals 
are part of different distributions. 

Continuing the school test example, we also want to allow for student-year effects.  These 
effects should be the same for all tests in a particular school year by a particular student, and 
uncorrelated across years and across students.  Suppose school years are identified by variable 
year.  If we were to specify “draw=year”, then we would get the same draw for all students in a 
particular year.  Instead, we want unique draws for all students and all years.  This may be 
achieved by, for example, “draw=10*student+year”.  The expression is unique for every 
student and every year, as long as 0 ≤ year≤ 9.  More generally, we could specify 
“draw=(maxyear+1)*student+year)”, where maxyear is a constant that is equal to the 
maximum value year ever takes. 

Naturally, we will also want test-specific effects, i.e., transitory effects, or “truly residual” 
effects.  We could specify “draw=100*student+10*year+testnum”, where testnum is the test 
number, and 0 ≤ testnum≤ 9.  However, since this is the lowest level, and there are no other 
equations that are correlated at this level with the test equations, we may more concisely write 
“draw=_iid”.  If there were other equations in the model, such as for the student’s mental state at 
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the time of the test, we may want to allow for correlation with that other equation.  In that case, we 
could not use “draw=_iid”, because it ensures independence from everything else. 

A common model specification error is to specify a residual with too many draws.  Consider 
an analysis of conception intervals with data that contain zero or more conceptions (level 2) per 
woman (level 1).  We are interested in woman-level unobserved heterogeneity and include a 
woman-specific residual (heterogeneity component).  Suppose conceptions are numbered by 
variable parity.  Woman-level heterogeneity should be specified with “draw=1”, not by 
“draw=parity”.  The latter would draw a new realization of the heterogeneity component for 
every conception spell.  Except in very specific cases, this implies that the heterogeneity 
component cannot be identified.  The aML search path will bring its standard deviation closer and 
closer to zero. 

! If the standard deviation of a residual is estimated to be very small, verify whether you 
correctly specified its draw variable.  Chances are that the model drew more 
independent realizations than you intended.   

 

! 
If a correlation coefficient is estimated to be very small, verify whether you correctly 
specified the draw variables of the corresponding two residuals.  Chances are that the 
model did not match the residual pairs as you intended.  Recall that residuals are only 
correlated if they are part of the same distribution and have the same draw number.  A 
“draw=_iid” specification is guaranteed to fail to contribute to identification of 
correlations. 
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13.4. Continuous Models 
This section documents continuous outcome models.  Only aspects that are specific to this 

type of model are discussed; features that are common to all types of models (such as data 
structure specification, keep/drop conditions, conditional likelihoods, the use of building blocks, 
and indirect referencing) are described in Section 13.3. 

Model Statement 

continuous model;   
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = varname; 
   model = <building blocks>; 

where the outcome may also be an expression.  For example: 

outcome = income; 
outcome = log(income); 
outcome = log(income+sqrt(income^2+1)); 
outcome = weight/(height^2); 

and the right-hand-side of the equation may include parameters (including elements of matrices 
and inverse matrices), regressor sets and regressor splines, integrated residuals, and non-integrated 
residuals. 

Unique Options and Features 

Continuous models must have at least one (non-integrated) residual from a normal 
distribution with independent draws for every continuous outcome.  They may have multiple 
residuals (variance components) from normal, finite mixture, ARMA(p,q), and CAR(1) 
distributions.  Residuals from normal distributions may be integrated out (“intres”) or enter 
directly (“res”).  Residuals from finite mixtures must be integrated out.  Residuals from 
ARMA(p,q) and CAR(1) distributions must enter directly. 

For technical reasons, there may only be one independent draw for integrated residuals, if any.  
This is rarely an issue, because it is almost always more efficient to include residuals as non-
integrated, and let aML compute the closed form solution to the likelihood. 

Naturally, you may specify residuals in continuous models which are correlated with residuals 
or integrated residuals in other types of models.  In such cases, the distribution of the residual in 
the non-continuous models is conditional on the vector of continuous outcomes.  See below for 
several examples. 
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Continuous models (and only continuous models) may include ARMA(p,q) and CAR(1) 
residuals; see Section 13.2.7 and 13.2.8, respectively. 

Discussion 

Continuous models are models in which the outcome is a continuous variable.  The program’s 
implementation allows for many features that make it especially well suited for panel data 
analysis.  These features express themselves in several levels of aggregation at which variance 
components (residuals) may apply.  The result is a large degree of flexibility, but you need to be 
very well aware of what you are specifying. 

Continuous models may be multilevel.  For example, suppose you want to analyze wage 
incomes in a household.  The unit of observation (level 1) is the household.  There may be 
multiple persons (level 2 branches), namely for husband’s wages, wife’s wages, possibly 
children’s wages, et cetera.  Each person may have zero or more jobs (level 3 branches).  These 
jobs may overlap (multiple jobs simultaneously); this can be handled correctly.  Within each job, 
there may be multiple wage observations (level 4 branches).  For example, someone held a job for 
several years, and the annual panel survey provides information on wages at several points in time 
within this job.  The outcome variable, a wage (or log-wage) is thus a level 4 variable.  Occupation 
is a level 3 variable; sex is a level 2 variable; household structure may be an observation level 
variable. 

Consider a few examples, in increasing complexity.  First a very simple continuous model: 
y x u= ′ +β , 

where we suppressed the observation subscript.  There is only one outcome per observation.  The 
control file would contain: 

define regset BetaX; var=...; 
define normal distribution; dim=1; name=u; 
 
continuous model; 
   outcome=y; 
   model = regset BetaX + 
           res(draw=1, ref=u); 

The draw variable of residual “u” is always one, implying that u’s draw is always the same within 
an observation.  Since there is only one outcome per observation, and one u, this is fine.  For the 
interested reader, the likelihood is the normal probability density: 

L
y x

u u

= −
− ′R

S|
T|

U
V|
W|

1
2 2

2

2σ π
β
σ

exp b g , 

where σ u
2  is the covariance of residual u.   
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Second, suppose you wish to estimate the continuous model simultaneously with a probit 
selection model: 

y x u
p x v p p

p p

= ′ +
= ′ + = <

= >

β
α* *

*

, 0 0
1 0

if
if

 

where p*  is the probit propensity.  Its binary outcome (variable “p”) is among the covariates in 
the first equation.  If the correlation between u and v is nonzero, estimation of the first equation 
without regard to the second equation will be biased.  The control file for this simple selection 
model is: 

define regset BetaX; var=...; 
define regset AlphaX; var = ...; 
define normal distribution; dim=2; name=u; name=v; 
 
continuous model; 
   outcome=y; 
   model = regset BetaX + 
           res(draw=1, ref=u); 
 
probit model; 
   outcome=p; 
   model = regset AlphaX + 
           res(draw=1, ref=v); 

Note that “u” and “v” are correlated because (1) they are part of the same distribution and (2) their 
draw variables are identical.  As a user, you need to be able to write down the model’s 
mathematical equations, but not necessarily the likelihood function.  For those who are interested, 
the joint likelihood of the continuous and probit outcomes may be separated into a continuous and 
a probit part, where probit residual v becomes conditional on the realized value of u, and thus on 
the continuous outcome: 

L L L= 1 2 , where L
y x

u u
1

2

2
1

2 2
= −

− ′R
S|
T|

U
V|
W|σ π

β
σ

exp b g  and L

x
p

x
p

v u

v u

v u

v u

2

1 0

1
=

−
′ +F
HG

I
KJ =

′ +F
HG

I
KJ =

R

S
||

T
||

Φ

Φ

α µ
σ

α µ
σ

|

|

|

|

if 

if 
 

Note that the distribution of v conditional on u is: 

u
v

N v u N y xu

vu v
v

uv
u

uv
u

F
HG
I
KJ
F
HG

I
KJ ⇒ − ′ −F

H
I
K~ | ~ ,

σ
σ σ

σ
σ β σ σ

σ

2

2
2

2
2
2b g . 
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Third, consider a simple continuous model with repeated outcomes (panel data model) and a 
variance component: 

y x ui i i= ′ + +β ε , 

where subscript i (i=1,...,k) indicates a replication number within an observation (the observation 
subscript has been suppressed) and ε  is common (same draw) across all replications.  Suppose the 
panel consists of annual waves, and wave i may be identified by data variable “year”.  If ε  is not 
integrated out, the model may be specified as: 

define regset BetaX; var=...; 
define normal distribution; dim=1; name=eps; 
define normal distribution; dim=1; name=u; 
 
continuous model; 
   outcome=y; 
   model = regset BetaX + 
           res(draw=1, ref=eps) + 
           res(draw=year, ref=u); 

Note draw variable “year” in the specification of residual “u”.  Since it takes on distinct values for 
each replication of the outcome, all residuals will be independent.  (We could have specified 
“draw=_iid” with the same result.).  The likelihood function is the multivariate normal density: 

L Y X Y X
k

u u u u= − − ′ −RST
UVW

−
+ +

−

+ +
−2 2

1
2 1

2
1π β βε ε ε εb g b g b gΣ Σ, ,exp , 

where Σε ε+ +u u,  is the covariance matrix of the k-vector of residuals and Σε ε+ +u u,  is its 
determinant.  Note that 

Σε ε

ε

ε

ε

σ σ
σ σ σ

σ σ σ σ

+ + =

+
+

+

F

H

GGGG

I

K

JJJJ
u u

u

u u

u u u

,

2 2

2 2 2

2 2 2 2

# # %
"

. 

Equivalently, you may write the likelihood as the integral over ε  of the conditional likelihood 
(conditional on ε ):   

L Y X Y X d
e

k

uu uu= − − − ′ − −RST
UVW

− − −z 1 1
2

12 2
1

2

σ
ε

σ
ε

φ π β ε β ε ε
εe jb g b g b gΣ Σexp , 

where Σuu  is the covariance matrix of the k-vector of residuals u.  If you specify ε  as an 
integrated residual in the continuous model statement, aML maximizes a numerical approximation 
to that likelihood: 
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L w Y X e Y X ei
i

n

uu i uu i

k

= − − − ′ − −RST
UVW=

− − −∑
1

1
2

12 2
1

2π β βb g b g b gΣ Σexp , 

where n is the number of integration points (user-specified in the define normal distribution 
statement) and wi and ei are Gauss-Hermite weights and support points, respectively.  See Section 
13.2.6, especially page 305.  The higher the number of points n, the closer the approximation.  
Suppose you decide on six support points: 

define regset BetaX; var=...; 
define normal distribution; dim=1; 
   number of integration points=6; name=eps; 
define normal distribution; dim=1; name=u; 
 
continuous model; 
   outcome=y; 
   model = regset BetaX + 
           intres(draw=1, ref=eps) +   /* Note the intres */ 
           res(draw=year, ref=u); 

! With sufficiently many numerical integration points, the estimates of continuous 
models with directly entering higher-level residuals (“res”) and integrated residuals 
(“intres”) are identical.  Since numerical integration requires more computations, we 
suggest that you directly enter higher-level residuals into the continuous outcome 
equation. 

However, in systems of simultaneous equations involving continuous and probit models, you 
may be forced to integrate-out higher-level residuals.  As a fourth example, suppose you wish to 
estimate the panel data continuous model simultaneously with a probit selection model: 

y x u
p x v

i i i

i i i

= ′ + +
= ′ + +

β ε
α η*  

where pi
*  is the probit propensity.  Its binary outcome (variable “p”) may be among the covariates 

in the first equation.  You wish to allow for both “permanent” selection cov ,ε ηb gc h≠ 0  and 

“transitory” selection cov ,u vb gc h≠ 0 .  Correlation in the residuals across equations implies that 
“p”, as an explanatory covariate in the first equation, is correlated with the residuals in that 
equation, so that estimation of the continuous model without regard to the probits yields biased 
results.  Suppose ε  enters your continuous equation directly, and η  is integrated out: 

define regset BetaX; var=...; 
define regset AlphaX; var = ...; 
define normal distribution; dim=2; numintpoints=6; 
   name=eps; name=eta; 
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define normal distribution; dim=2; name=u; name=v; 
 
continuous model; 
   outcome=y; 
   model = regset BetaX + 
           res(draw=1, ref=eps) + 
           res(draw=year, ref=u); 
 
probit model; 
   outcome=p; 
   model = regset AlphaX + 
           intres(draw=1, ref=eta) + 
           res(draw=year, ref=v); 

Note that “eps” and “eta” are correlated because (1) they are defined as part of the same 
distribution and (2) they have the same draw variable.  The same holds for “u” and “v”, which 
through draw variable “year” are pairwise correlated.  (You may not specify “draw=_iid”, 
because all residuals would then be independent.)  Similar to the single-level selection equation 
above, the distribution of vi is conditional on continuous outcomes.  Let’s write the systems of 
equations in matrix form: 

Y X u
P X v

= + +
= + +

β ε
α η

ε

η

Λ
Λ*  

where Λε  and Λη  are both i-vectors of ones, Λ Λε η= = ′( , , , )11 1… , ε  and η  are scalars, and u 
and v are k-vectors.  Note that 

ε
η

σ
σ σ

ε

εη η

F
HG
I
KJ

F
HG

I
KJ

F
HG

I
KJ~ ,N 0

2

2   and  
u
v

N N
I
I I

uu

vu vv

u

vu v

F
HG
I
KJ

F
HG

I
KJ

F
HG

I
KJ =

F
HG

I
KJ

F
HG

I
KJ~ , ,0 0

2

2

Σ
Σ Σ

σ
σ σ

, 

where I is the k-by-k identity matrix.  Conditional on continuous outcomes vector Y, the 
distribution of v is: 

v Y N Y XBvu uu vv vu uu vu| ~ ,Σ Λ Σ Λ Σ Σ Σ Λ Σ Λ Σ Σε εε ε ε εε ε′ + − − ′ + ′
− −b g b g b ge j1 1 . 

Since we condition on Y ( ε  and u) instead on just u, the resulting conditional covariance matrix is 
not diagonal.  The k probit modules may thus not be separated, and a k-variate cumulative normal 
probability algorithm is required.  In aML, this is implemented up to trivariate, so for k>3, aML 
will issue and error message and suggest that you try to remove the source of the correlation.  This 
is most easily accomplished by integrating-out ε  in the continuous equations.  This is one of the 
very few cases where you have no choice but to integrate-out higher-level residuals in continuous 
models.  As stated above, integrated residuals typically require more computations than directly 
entering residual. 
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In the next example, you wish to estimate a panel data continuous model in which one of the 
explanatory covariates is the outcome of a correlated hazard process.  For example, job tenure may 
be endogenous in an analysis of annual wages.  Suppose your data contain information on multiple 
jobs per person and multiple annual wage records per job.  The model may be: 

y x u w
h t T t x

jt jt j jt

j j

= ′ + + +
= ′ + ′ +

β ε
γ α ηln b g b g  

where j indicates job number, t time period, lnh tj b g  is the log-hazard of separation from job j at 

time t, and ′γ T tb g  is the duration dependency (baseline log-hazard).  There are no time-varying 
covariates in the hazard model, but the example remains virtually the same with time-varying 
covariates.  This model has three levels in wage outcomes and two in duration on the job.  If ε  is 
integrated out, no correlation remains in the conditional likelihoods, and continuous and hazard 
modules may be readily separated.  If ε  is not integrated out, the likelihood function is more 
complicated.  First the model specification: 

define regset BetaX; var=...; 
define spline JobDuration; nodes=...; 
define regset AlphaX; var = ...; 
define normal distribution; dim=2; numintpoints=6; 
   name=eps; name=eta; 
define normal distribution; dim=1; name=u; 
define normal distribution; dim=1; name=w; 
 
continuous model; 
   outcome=y; 
   model = regset BetaX + 
           res(draw=1, ref=eps) + 
           res(draw=jobnum, ref=u) + 
           res(draw=_iid, ref=w); 
 
hazard model; 
   censor=...; duration=...; 
   model = durspline(origin=0, ref=JobDuration) + 
           regset AlphaX + 
           intres(draw=1, ref=eta); 

Recall that, in hazard models, all residuals must be integrated out.  To derive the likelihood 
function, it is again useful to write the model in matrix notation: 

Y X u w
H t t X

u= + + +
= + +

β ε
γ α η

ε

η

Λ Λ
Τ Λln b g b g  
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Suppose there are J jobs and (N1,…,NJ) annual wage records per job.  Residuals ε  and η  are 
scalar, u is a J-vector, and w is an N-vector, where N is the sum over (N1,…,NJ).  The load matrices 
on residuals are Λε , an N-vector of ones, Λη , a J-vector of ones, and  

Λu

N

N

N J

=

F

H

GGGG

I

K

JJJJ

1 0 0
0 1 0

0 0 1

1

2

…
…

# # % #
…

, 

where 1n  is an n-vector of ones.  Conditional on continuous outcomes Y, the distribution of η  is: 

η βηε ε ηη ηε ε ε ηε| ~ ,Y N Y Xyy yyΣ Λ Σ Σ Σ Λ Σ Λ Σ′ − − ′ ′− −1 1b gd i , 
where Σ Λ Σ Λ Λ Σ Λ Σyy u uu u ww= ′ + ′ +ε εε ε , Σηε ηεσ= , and Σηη ησ= 2 .  We used Σηε  and Σηη  as 
they generalize to the case where ε  and η  are sub-vectors of a higher-dimensional integrated 
distribution.  AML integrates-out η  corresponding to this formula.  It adds the conditional mean 
to Gauss-Hermite support points and pre-multiplies the result by Λη  to obtain the integration 
point in each of the hazard equations. 

Internally, aML closely follows the load matrix approach.  However, internally, it represents 
the above model as: 

Y X
u
v

w

H t t X

u
w= +

F
HG
I
KJ
F
HG
I
KJ +
F
HG
I
KJ
F
HG
I
KJ +

= + +
F
HG
I
KJ
F
HG
I
KJ

β
ε
η

γ α
ε
η

ε

η

Λ Λ
Λ

Τ
Λ

0
0 0

0
0 0

0 0
0

ln .b g b g
 

From this notation, it will be clear how aML allows for multiple residuals from the same 
distribution (e.g., both ε  and η ) in the same equation:  the corresponding load matrix will have 
fewer zero elements.  As a user, you simply specify additional residuals in the model statement. 

Finally, consider how heteroskedasticity may be captured in a three-level continuous model: 
Y X u wu w= + + +β εεΛ Λ Λ  

where all symbols are as in the previous example, and Λw  is the N-by-N load matrix on the 
transitory residuals.  So far, we assumed that Λw  is the identity matrix, but transitory residuals 
may be multiplied by parameters and regressor sets in the same way as other residuals.  Suppose 
the control file contains something like: 



13.4.  Continuous Models 349 

 

R
ef

er
en

ce
 M

an
ua

l 

continuous model; 
   outcome=y; 
   model = regset BetaX + 
           regset ThetaX * res(draw=1, ref=eps) + 
           par phi * res(draw=jobnum, ref=u) + 
           regset PsiX * res(draw=_iid, ref=w); 

The load matrices, which in the examples above consisted of zeroes and ones only, now contain 
the values of ′θ x jt , φ , and ′ψ x jt  where there used to be ones.  They become part of the overall 
covariance matrix and are handled appropriately.   
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13.5. Probit Models 
This section documents simple (binary) probit models.  For ordered probit models see Section 

13.6; for multinomial probit models Section 13.15.  Only aspects that are specific to these types of 
models are discussed; features that are common to all types of models (such as data structure 
specification, keep/drop conditions, conditional likelihoods, the use of building blocks, and 
indirect referencing) are described in Section 13.3. 

Model Statement 

probit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = varname; 
   [threshold = {parname | (refvar=varname)};] 
   model = <building blocks>; 

Unique Options and Features 

A probit model is used to specify a model with a binary outcome.  You may specify both non-
integrated and integrated residuals, subject to a restriction discussed below.   

Underlying all probit equations is an underlying propensity equation.  For example, a very 
simple propensity equation is given by: 

y x u* = ′ +β  

The value of the probit outcome variable depends on the range in which y*  falls.  The only 
difference between probit and logit models is in the distribution of u:  normal in the probit model 
and logistic in the logit model.34  For the probit, the density and cumulative distribution functions 
are 

( ) ( ) { } ( )
1

22 21
22 expuf u u uπσ φ

−
= − =  and ( ) ( ) { } ( )

1
22 21

22 exp
u

uF u d u
τ

πσ τ τ
−

=−∞

= − = Φ∫ , 

respectively.  Typically, σ u
2  is normalized, σ u

2 1= , but aML allows any value.  Multivariate 
extensions are allowed up to trivariate, as discussed below.   

                                                           
34 The two distributions are very similar, and the two models thus yield very similar results.  The main 

difference is that the logistic distribution has a larger standard deviation (about / 3 1.8138π ≈ ) than the 
normal distribution, resulting in parameter estimates that are larger in absolute value.  The ratio of coefficient 
value to standard deviation of the residual, though, is very close.   
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The right-hand-side specification of a probit model must always include a regressor set, 
parameter, or regressor spline, plus a non-integrated residual from a normal distribution with 
independent draws for every outcome.  Optionally, you may specify integrated residuals from 
normal or finite mixture distributions, and additional non-integrated residuals from normal 
distributions.  You may not include duration splines, ARMA(p,q), or CAR(1) residuals.  Very 
often, probit models contain an independently and identically distributed standard normal residual 
(iid N(0,1)).  You may define your own standard normal distribution and use its residual, you may 
use an implicitly defined univariate standard normal distribution, or you may even omit the 
standard normal residual altogether: 

define regset BetaX; var = ...; 
define normal distribution; dim=1; name=u; 
probit model; ...; 
   model = regset BetaX + res(draw=_iid, ref=u); 

or: 

   model = regset BetaX + res(draw=_iid, ref=N(0,1)); 

or: 

   model = regset BetaX; 

! Probit equations must always include a non-integrated normal residual with 
independent draws for every outcome.  However, if a probit equation is specified 
without non-integrated residual, aML inserts an iid N(0,1) residual.  If you explicitly 
specify any non-integrated residual, aML does not insert any other residual. 

aML requires that residuals which generate correlation across probit equations be integrated 
out, except when the number of probit modules is three or fewer.  To better understand this rule, 
consider a system of k probit equations with a variance component, y x ui i i

* = ′ + +β ε , i=1,…,k.  If 
ε  enters directly, the covariance matrix is: 

Ω = ′ + =

+
+

+

F

H

GGGG

I

K

JJJJ
1 1 2 2

2 2 2 2

2 2 2 2

2 2 2 2

k k k u

u

u

u

Iσ σ

σ σ σ σ
σ σ σ σ

σ σ σ σ

ε

ε ε ε

ε ε ε

ε ε ε

…
…

# # % #
…

 

The joint likelihood of the k probit modules involves a k-variate cumulative normal probability 
with this covariance matrix (where covariance (i,j) becomes negative if either probit outcome i or 
j, but not both, is zero.)  This has been implemented in aML for k ≤ 3 .  For higher dimensions, it 
will issue an error message and suggest that you remove the correlation by integrating-out its 
source.  In this case, that source is ε .  Without ε , the covariance matrix is Ik uσ 2 , i.e., diagonal.  
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If the covariance matrix is diagonal, the modules may be separated into k univariate probits.  Of 
course, with sufficiently many integration points, the specification with integrated higher-level 
residuals is equivalent to the specification with directly entering residuals.  

! Non-integrated probit residuals at higher levels than the outcome introduce correlation 
across probit equations.  If there are only three or fewer probit outcomes in any one 
observation, this is handled without problem.  However, at higher dimensionalities, 
you need to integrate-out the higher-level residuals.   

In continuous models, numerical integration of residuals requires many more computations 
than directly entering residuals.  This is much less the case in probit models, so we recommend 
that you always integrate-out higher-level residuals in probit models. 

outcome = varname; 

The outcome value provided by the variable varname must binary, taking a value of zero or 
one.  Note that, instead of a variable name, varname may be an expression which evaluates to zero 
or one.  For example, 

outcome = (earnings>0); 
outcome = (educ==2); 
outcome = (disabled==1 or health<=2); 

threshold = {parname | (refvar=varname)}; 

The “threshold” statement is optional and allows for nonzero thresholds.  Consider the 
basic probit model: 

y x u y
y
y

*
*

*,= ′ + =
<
≥

RST
β

τ
τ

0
1

 if  
 if

 

where τ  is the threshold.  In most applications, you will want to fix the threshold (implicitly) at 
zero, and estimate an intercept.  This is the default which applies when no “threshold” is 
specified.  (You remain responsible for specifying the intercept, most commonly by including the 
number “1” in a regressor set.)  Alternatively, you may define a parameter and estimate its value 
as the threshold: 

define parameter tau; 
define regset BetaX; var = ...; 
probit model; 
   outcome=y; 
   threshold=tau; 
   model=regset BetaX; 
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The threshold may also be referenced indirectly.  For example, to specify separate thresholds for 
men (sex=1) and women (sex=2): 

define parameter MaleTau;   ref = 1; 
define parameter FemaleTau; ref = 2; 
<...> 
   threshold = (refvar=sex); 

Note that the threshold is perfectly collinear with the intercept, so you should not specify both a 
threshold and an intercept.  (The threshold and intercept are the same with opposite signs.) 

The likelihood of a binary probit module is 

( )
( )

if  0;
1 if  1,

x y
L

x y
τ β

τ β
′Φ − =

=  ′− Φ − =
 

where ( )uΦ  is the cumulative normal probability function.  A multivariate extension applies up 
to trivariate.  If there is an integrated residual in the probit equation, say, ε , the likelihood 
modules becomes conditional on the Gauss-Hermite support point, say, e, and in the above, 

( )x eτ β ′Φ − −  replaces ( )xτ β ′Φ − .  In a system of simultaneous equations involving 
continuous models, probit residuals and integrated residuals may be conditional on continuous 
outcomes.  aML will compute the conditional means and (co)variances, and compute the 
likelihood correspondingly. 

model = <building blocks>; 

The right-hand-side specification must always include a regressor set, parameter, or regressor 
spline.  In addition, a probit model requires at least one non-integrated normal residual; aML 
automatically inserts an iid N(0,1) residual if you do not specify any non-integrated residual.  
Optionally, you may specify integrated residuals from normal or finite mixture distributions.  You 
may not include duration splines or ARMA(p,q), or CAR(1) residuals. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models and heteroskedasticity; see Section 13.3.5. 
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13.6. Ordered Probit Models 
This section documents ordered probit models.  Only aspects that are specific to these types of 

models are discussed; features that are common to all types of models (such as data structure 
specification, keep/drop conditions, conditional likelihoods, the use of building blocks, and 
indirect referencing) are described in Section 13.3. 

Model Statement 

Thresholds to be estimated: 

ordered probit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcomes = varname1 varname2; 
   thresholds = {vectorname | (refvar=varname)}; 
   model = <building blocks>; 

Thresholds are given by data variables: 

ordered probit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   threshold vars = varname1(-Inf=x1) varname2(Inf=x2); 
   model = <building blocks>; 

Unique Options and Features 

An ordered probit model is used to specify a model with a qualitative ordered outcome, i.e., to 
specify the probability that a random variable (or combination of random variables) is within a 
specified range of the real line.  The range may have known or unknown (to be estimated) 
thresholds, which influences parameter identification.  You may specify both non-integrated and 
integrated residuals, subject to a restriction discussed below.   

Underlying all ordered probit equations is an underlying propensity equation.  For example, a 
very simple propensity equation is given by: 

y x u* = ′ +β  

The value of the ordered probit outcome variable depends on the range in which y*  falls.  The 
density and cumulative distribution functions are 
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( ) ( ) { } ( )
1

22 21
22 expuf u u uπσ φ

−
= − =  and ( ) ( ) { } ( )

1
22 21

22 exp
u

uF u d u
τ

πσ τ τ
−

=−∞

= − = Φ∫ , 

respectively.  Typically, σ u
2  is normalized, σ u

2 1= , but aML allows any value.  Multivariate 
extensions are allowed up to trivariate, as discussed below.   

The right-hand-side specification of an ordered probit model must always include a regressor 
set, parameter, or regressor spline, plus a non-integrated residual from a normal distribution with 
independent draws for every outcome.  Optionally, you may specify integrated residuals from 
normal or finite mixture distributions, and additional non-integrated residuals from normal 
distributions.  You may not include duration splines, ARMA(p,q), or CAR(1) residuals.  Very 
often, ordered probit models contain an independently and identically distributed standard normal 
residual (iid N(0,1)).  You may define your own standard normal distribution and use its residual, 
you may use an implicitly defined univariate standard normal distribution, or you may even omit 
the standard normal residual altogether: 

define regset BetaX; var = ...; 
define normal distribution; dim=1; name=u; 
ordered probit model; ...; 
   model = regset BetaX + res(draw=_iid, ref=u); 

or: 

   model = regset BetaX + res(draw=_iid, ref=N(0,1)); 

or: 

   model = regset BetaX; 

! Ordered probit equations must always include a non-integrated normal residual with 
independent draws for every outcome.  However, if an ordered probit equation is 
specified without non-integrated residual, aML inserts an iid N(0,1) residual.  If you 
explicitly specify any non-integrated residual, aML does not insert any other residual. 

aML requires that residuals which generate correlation across (ordered) probit equations be 
integrated out, except when the number of (ordered) probit modules is three or fewer.  To better 
understand this rule, consider a system of k (ordered) probit equations with a variance component, 
y x ui i i

* = ′ + +β ε , i=1,…,k.  If ε  enters directly, the covariance matrix is: 

Ω = ′ + =

+
+

+

F

H

GGGG

I

K

JJJJ
1 1 2 2

2 2 2 2

2 2 2 2

2 2 2 2

k k k u

u

u

u

Iσ σ
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…
…
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…
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The joint likelihood of the k probit modules involves a k-variate cumulative normal probability 
with this covariance matrix (where covariance (i,j) becomes negative if either probit outcome i or 
j, but not both, is zero.)  This has been implemented in aML for k ≤ 3 .  For higher dimensions, it 
will issue an error message and suggest that you remove the correlation by integrating-out its 
source.  In this case, that source is ε .  Without ε , the covariance matrix is Ik uσ 2 , i.e., diagonal.  
If the covariance matrix is diagonal, the modules may be separated into k univariate probits.  Of 
course, with sufficiently many integration points, the specification with integrated higher-level 
residuals is equivalent to the specification with directly entering residuals.  

! Non-integrated (ordered) probit residuals at higher levels than the outcome introduce 
correlation across probit equations.  If there are only three or fewer (ordered) probit 
outcomes in any one observation, this is handled without problem.  However, at higher 
dimensionalities, you need to integrate-out the higher-level residuals.   

In continuous models, numerical integration of residuals requires many more computations 
than directly entering residuals.  This is much less the case in ordered probit models, so we 
recommend that you always integrate-out higher-level residuals in ordered probit models. 

aML supports ordered probit models with unknown thresholds that are the same for all 
observations and that may need to be estimated and ordered probit models with known thresholds 
that may vary by observation.  The next two subsections discuss these model types in turn. 

13.6.1. Ordered Probit Models with Unknown Thresholds 

ordered probit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcomes = varname1 varname2; 
   thresholds = {vectorname | (refvar=varname)}; 
   model = <building blocks>; 

The data structure specification, keep/drop condition, and numerator/denominator statement 
are described in Section 13.3.1.  The other statements are documented here. 

outcomes = varname1 varname2; 

The ordered probit outcome variable, with unknown thresholds, is defined to be a positive 
integer in a pre-specified contiguous range, say Y K= 1 2, , ," , or some range of these values.  For 
example, individuals may be asked to rank their health status as poor, fair, good, very good, or 
excellent.  Underlying their response is actual health status, presumably a continuous variable.  
Depending on the continuous value of health status and the respondent’s perception of what 
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thresholds separate poor, fair, good, very good, and excellent health, the respondent will provide a 
health category.  For estimation, the categories need to be converted to contiguous integers, such 
that the lowest category is assigned a “1” and higher categories higher values.  But what if a 
respondent is not sure about his category, or refuses to narrow it down?  For example, he only 
states that his health is good or very good.  aML is capable of dealing with such ranges of 
responses.  In fact, it always requires you to specify a range.  Most of the time, that range consists 
of just one category, but any contiguous range is acceptable.   

The outcome is represented by two positive integer-valued variables (or expressions), denoted 
above by varname1 and varname2.  The values of varname1 and varname2 represent the 
subscript numbers of the lower and upper thresholds, respectively, of the interval in which an 
underlying real values index function value lies, as explained below.   

thresholds = {vectorname | (refvar=varname)}; 

The “threshold” statement in the binary probit model is optional; the “thresholds” 
statement here is mandatory.  The threshold values are parameters that are organized in a vector, 
and may be estimated (or fixed at pre-specified values).  For example: 

define vector Cutoffs; dim=4; 
ordered probit model; ...; 
   thresholds = Cutoffs; 

or using indirect referencing, for example on the basis of age: 

define vector Young; ref=1; dim=4; 
define vector Old;   ref=2; dim=4; 
ordered probit model; ...; 
   thresholds = (refvar = 1+(age>=70)); 

The thresholds must be strictly ordered.  To prevent thresholds from crossing over during the 
iterative search procedure, we recommend that the vector be defined with the “increasing” 
option, which is done by default (page 296).  The program will abort with an error message should 
the thresholds not be strictly ordered. 

The following logic underlies these definitions.  Let the real-valued continuous index value 
underlying the qualitative outcome be y*  and the positive integer valued outcome be denoted 
y K( , , , )= 1 2 " . The correspondence between the K values of the outcome variable y and K 

intervals on the real line is determined by K-1 thresholds and is given by  

y x u y

y
y

K yK K

*

*

*

*

,= ′ + =

≤ <
≤ <

≤ <

R
S
||

T
||

−

β

τ τ
τ τ

τ τ

1
2

0 1

1 2

1

if 
if 

if 
# #
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The end-points of the first and last intervals are defined to by τ 0 = −∞  and τ K = ∞ , respectively.  
Verify that this leaves K-1 thresholds to distinguish K categories. 

It may seem redundant to specify two variables in order to represent a single categorical 
outcome variable.  The reason for taking this seemingly complicated route is the ability to handle 
censored and multi-category cases.  The formulation is flexible in that outcomes corresponding to 
a set of contiguous integers is easily represented by specifying the subscripts of the thresholds 
between which the real-valued index y*  must lie.  Examples include  

y

y
j y j j

y
y

m n y m n
y

K y K

j j

m n
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=

≤ < = =
≤ < = − =

≤ < = =
− ≤ < = =
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if varname1 varname2
if varname1 varname2
if varname1 varname2
if varname1 varname2
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if varname1 varname2
if varname1 varname2

τ τ
τ τ
τ τ
τ τ
τ τ
τ τ
τ τ

*

*

*
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*
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*

,
 

Recall that varname1 and varname2 may be expressions.  If the data only contain single-
category outcomes in, say, variable category, the outcomes may be conveniently specified as: 

outcomes = category-1  category; 

The likelihood of an outcome (integer of range of integer values) is given by the probability 
of the corresponding interval on the real line.  Take the simple example of y x u* = ′ +β , then 

( ) ( ) ( )*
j k k jP y x xτ τ τ β τ β′ ′≤ < = Φ − − Φ − , 

where ( )Φ ⋅  denotes the cumulative normal probability function.  Ordered probit residuals may 
have any variance, not just the standard unit variance.  Suppose u has standard deviation σ u , then 

P y x x
j k

k

u

j

u

τ τ τ β
σ

τ β
σ

≤ < =
− ′F

HG
I
KJ −

− ′F
HG

I
KJ

*d i Φ Φ . 

A multivariate extension applies up to trivariate.  If there is an integrated residual in the ordered 
probit equation, say, ε , the likelihood modules becomes conditional on the Gauss-Hermite 
support point, say, e, and in the above, ( )x eτ β ′Φ − −  replaces ( )xτ β ′Φ − .  In a system of 
simultaneous equations involving continuous models, ordered probit residuals and integrated 
residuals may be conditional on continuous outcomes.  aML will compute the conditional means 
and (co)variances, and compute the likelihood correspondingly. 
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model = <building blocks>; 

The right-hand-side specification must always include a regressor set, parameter, or regressor 
spline.  In addition, an ordered probit model requires at least one non-integrated normal residual; 
aML automatically inserts an iid N(0,1) residual if you do not specify any non-integrated residual.  
Optionally, you may specify integrated residuals from normal or finite mixture distributions.  You 
may not include duration splines or ARMA(p,q), or CAR(1) residuals. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models and heteroskedasticity; see Section 13.3.5. 

13.6.2. Ordered Probit Models with Known Thresholds 

ordered probit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   threshold vars = varname1(-Inf=x1) varname2(Inf=x2); 
   model = <building blocks>; 

The data structure specification, keep/drop condition, and numerator/denominator statement 
are described in Section 13.3.1.  The other statements are documented here. 

threshold vars = varname1(-Inf=x1) varname2(Inf=x2); 

Ordered probit models with known thresholds are fully analogous to their counterparts with 
unknown thresholds, except that the thresholds are known real numbers given in the data.  There is 
no “outcome” statement; the outcome consists of an interval of which the lower and upper bound 
are specified in the “threshold vars” statement.  The lower bound is varname1, which may 
be a variable name or an expression; the upper bound varname2 may also be an expression.  
These values may be different or may be the same across observations or evaluations within 
observations.   

In the case with unknown thresholds, −∞  and ∞  are represented by integers 0 and K, 
corresponding to implicit thresholds τ 0 = −∞  and τ K = ∞ .  In the case with known thresholds, 
the threshold variable must somehow communicate to aML what −∞  and ∞  are.  This is 
implemented by letting the user specify special values for −∞  and ∞ .  These values are 
communicated to aML in the “(-Inf=x1)” and “(Inf=x2)” specifications, where x1 and x2 are 
real numbers. 

Consider an example.  Suppose a household survey asks for individuals’ total income.  If the 
respondent is unable or unwilling to provide an exact dollar figure, he is asked:  “Is it more or less 
than $40,000?”  If the respondent indicates that it is less, the next question is “Is it more or less 
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than $15,000?”  Or, if income exceeds $40,000, he is asked “Is it more or less than $100,000?”  If 
he is unable or unwilling to reveal any information at all, the outcome of interest is missing and 
the record must be dropped from the analysis.  If he answers the $40,000 question but not the 
follow-up question, we know that his income is either under $40,000 or above $40,000.  If the 
follow-up question is answered, we know that his income is under $15,000, between $15,000 and 
$40,000, between $40,000 and $100,000, or above $100,000.  (If he at any point indicates that his 
income is about equal to the question threshold, he effectively provided an exact dollar figure.)  
Note that there are four categories, and that the potential exists for responses that span two 
categories.  You decide, somewhat arbitrarily, to assign -$999,999 to denote −∞  and $999,999 to 
denote ∞ .  Using your (SAS, Stata, SPSS) data preparation package, you create two new 
variables, say, lower and upper, and recode the information as follows: 

Response lower upper
income<15,000 -999999 15000 
15,000<income<40,000 15000 40000 
40,000<income<100,000 40000 100000 
income>100,000 100000 999999 
income<40,000 -999999 40000 
income>40,000 40000 999999 

Suppose your income model is y x u= ′ +β .  With range data rather than exact income values, 
you may estimate an ordered probit with known thresholds: 

define regset BetaX; var = ...; 
define normal distribution; dim=1; name=u; 
 
ordered probit model; 
   threshold vars = lower(-Inf=-999999) upper(Inf=999999); 
   model = regset BetaX + 
           res(draw=_iid, ref=u); 

! In the income range example, we explicitly defined the probit residual and specified it 
in the probit model.  If it were omitted, aML would automatically insert an iid N(0,1) 
residual.  This would constrain its standard deviation to be one, which is very unlikely 
in this model.  (This is also the reason why it is not a good idea to estimate the model 
as an ordered logit, as the logistic residual has a non-estimable standard deviation.) 

Note that need to specify special values for −∞  and ∞  makes it dangerous to specify the 
outcome (threshold variables) as expressions.  For example, if all income values were positive, 
you might want to estimate the model in terms of logarithms, which would involve something like 
“log(upper)(Inf=log(999999))”.  This may or may not work, because of numerical 
precision issues.  Internally, all data variables are stored in single precision, whereas most other 
numbers are in double precision.  The logarithm of a single precision variable equal to 999999 
may not be exactly the same as the log of a double precision number that is equal to 999999.  It is 
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thus better to transform ordered probit threshold variables in the data preparation stage, before 
raw2aml. 

What if the example pertained to earnings, not total income?  Total income may include 
business losses and may thus be negative.  With earnings, the lower limit is zero, and −∞  is never 
relevant.  Correspondingly, variable “lower” may be zero, but never –999999.  For technical 
reasons, you must still assign a special number such as “(-Inf=-999999)”, even though the data 
never contain that number.  Do not specify “(-Inf=0)”, as your zero is truly a zero, not a 
representation of −∞ . 

The example readily extends into a switching regression application in which individuals’ 
exact responses are modeled using the same underlying model as the range responses.  Suppose 
that for exact responses, you set both variables lower and upper equal to the exact income value, 
and thus to each other.  The model may be specified as: 

define regset BetaX; var = ...; 
define normal distribution; dim=1; name=u; 
 
ordered probit model;  keep if lower<upper; 
   threshold vars = lower(-Inf=-999999) upper(Inf=999999); 
   model = regset BetaX + 
           res(draw=_iid, ref=u); 
 
continuous model;  keep if lower==upper; 
   outcome = lower; 
   model = regset BetaX + 
           res(draw=_iid, ref=u); 

aML switches between a continuous and an ordered probit model based on the values of lower 
and upper.  The same regressor set and the same residual enter in both model specifications, so 
the coefficients in the two models are restricted to be equal.  In other words, both exact and range 
responses contribute to the identification of the model.  As formulated here, the underlying model 
is exactly the same for the two types of responses.  In a real application, you would probably 
include an additional regressor set in the ordered probit with flags for “don’t know” and “refuse” 
responses to capture any systematic differences that are not picked up by other observables. 
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13.7. Logit Models 
This section documents simple (binary) logit models, also known as logistic regression 

models.  Only aspects that are specific to these types of models are discussed; features that are 
common to all types of models (such as data structure specification, keep/drop conditions, 
conditional likelihoods, the use of building blocks, and indirect referencing) are described in 
Section 13.3. 

Model Statement 

logit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = varname; 
   [threshold = {parname | (refvar=varname)};] 
   model = <building blocks>; 

Instead of “logit”, you may write “logistic”. 

Unique Options and Features 

A logit model is used to specify a model with a binary outcome.  Residuals (unobserved 
heterogeneity) must be integrated out.   

Underlying all logit equations is an underlying propensity equation.  For example, a very 
simple propensity equation is given by: 

y x u* = ′ +β  

The value of the logit outcome variable depends on the range in which y*  falls.  The density and 
cumulative distribution functions of u are 

f u
x

x
b g l q

l qc h
=

−

+ −

exp

exp1
2  and F u

u
b g l q=

+ −
1

1 exp
, 

respectively.35  The logistic density is also known as the sech2 or Fisk density (Johnson and Kotz, 
1970, volume 2).   

                                                           
35 The only difference between logit and probit models is in the distribution of the residual:  normal for 

probits and logistic for logits.  The two distributions are very similar and the two models thus yield very 
similar results.  The main difference is that the logistic distribution has a larger standard deviation (about 

/ 3 1.8138π ≈ ) than the normal distribution, resulting in parameter estimates that are larger in absolute 
value.  The ratio of coefficient value to standard deviation of the residual, though, is very close.   
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The right-hand-side specification of a logit model must always include a regressor set, 
parameter, or regressor spline.  Optionally, you may specify integrated residuals from normal or 
finite mixture distributions.  You may not include duration splines or non-integrated residuals 
from normal, ARMA(p,q), or CAR(1) distributions.  A logit model with integrated normal 
residual(s) is sometimes referred to as the normal probability logit model. 

outcome = varname; 

The outcome value provided by the variable varname must binary, taking a value of zero or 
one.  Instead of a variable name, varname may be an expression which evaluates to zero or one.  
For example, 

outcome = (earnings>0); 
outcome = (educ==2); 
outcome = (disabled==1 or health<=2); 

threshold = {parname | (refvar=varname)}; 

The “threshold” statement is optional and allows for nonzero thresholds.  Consider the 
basic logit model: 

y x u y
y
y

*
*

*,= ′ + =
<
≥

RST
β

τ
τ

0
1

 if  
 if

 

where τ  is the threshold.  In most applications, you will want to fix the threshold (implicitly) at 
zero, and estimate an intercept.  This is the default which applies when no “threshold” is 
specified.  (You remain responsible for specifying the intercept, most commonly by including the 
number “1” in a regressor set.)  Alternatively, you may define a parameter and estimate its value 
as the threshold: 

define parameter tau; 
define regset BetaX; var = ...; 
logit model; 
   outcome=y; 
   threshold=tau; 
   model=regset BetaX; 

The threshold may also be referenced indirectly.  For example, to specify separate thresholds for 
men (sex=1) and women (sex=2): 

define parameter MaleTau;   ref=1; 
define parameter FemaleTau; ref=2; 
<...> 
   threshold = (refvar=sex); 
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The threshold is perfectly collinear with the intercept, so you should not specify both a threshold 
and an intercept.  (The threshold and intercept are the same with opposite signs.) 

The likelihood of a binary logit module is 

L
F x y

F x y
=

− ′ =
− − ′ =
RST

τ β
τ β
b g
b g

if  
if  

0
1 1

;
,

 

where F ub g  is the cumulative logistic function, F u ub g l qc h= + −
−

1
1

exp .  If there is an integrated 
residual, say, ε , the likelihood modules becomes conditional on the Gauss-Hermite support point, 
say, e, and in the above, F x eτ β− ′ −b g  replaces F xτ β− ′b g .  In a system of simultaneous 
equations involving continuous models, logit integrated residuals may be conditional on 
continuous outcomes.  aML will compute the conditional means and (co)variances, and compute 
the likelihood correspondingly. 

model = <building blocks>; 

The right-hand-side specification must always include a regressor set, parameter, or regressor 
spline.  Non-integrated residuals may not enter logit specifications.  (aML always automatically 
inserts an iid logistic residual.)  Optionally, you may specify integrated residuals from normal or 
finite mixture distributions.  You may not include duration splines or ARMA(p,q), or CAR(1) 
residuals. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models and heteroskedasticity; see Section 13.3.5. 
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13.8. Ordered Logit Models 
This section documents ordered logit (logistic regression) models.  Section 13.7 discusses 

simple (binary) logit models, Section 13.14 multinomial logit models.  Only aspects that are 
specific to these types of models are discussed; features that are common to all types of models 
(such as data structure specification, keep/drop conditions, conditional likelihoods, the use of 
building blocks, and indirect referencing) are described in Section 13.3. 

Model Statement 

Thresholds to be estimated: 

ordered logit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcomes = varname1 varname2; 
   thresholds = {vectorname | (refvar=varname)}; 
   model = <building blocks>; 

Thresholds are given by data variables: 

ordered logit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   threshold vars = varname1(-Inf=x1) varname2(Inf=x2); 
   model = <building blocks>; 

Instead of “logit”, you may write “logistic”. 

Unique Options and Features 

An ordered logit model is used to specify a model with an ordered qualitative outcome, i.e., to 
specify the probability that a random variable (or combination of random variables) is within a 
specified range of the real line.  The range may have known or unknown (to be estimated) 
thresholds, which influences parameter identification.  Residuals must be integrated out.   

Underlying all ordered logit equations is an underlying propensity equation.  For example, a 
very simple propensity equation is given by: 

y x u* = ′ +β  

The value of the ordered logit outcome variable depends on the range in which y*  falls.  The 
density and cumulative distribution functions of u are 
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f u
x

x
b g l q

l qc h
=

−

+ −

exp

exp1
2  and F u

u
b g l q=

+ −
1

1 exp
, 

respectively.  The logistic density is also known as the sech2 or Fisk density (Johnson and Kotz, 
1970, volume 2).   

The right-hand-side specification of an ordered logit model must always include a regressor 
set, parameter, or regressor spline.  Optionally, you may specify integrated residuals from normal 
or finite mixture distributions.  You may not include duration splines or non-integrated residuals 
from normal, ARMA(p,q), or CAR(1) distributions.  An ordered logit model with integrated 
normal residual is sometimes referred to as the normal probability ordered logit model. 

aML supports ordered logit models with unknown thresholds that are the same for all 
observations and that may need to be estimated, and ordered logit models with known thresholds 
that may vary by observation.  The next two subsections discuss these model types in turn. 

13.8.1. Ordered Logit Models with Unknown Thresholds 

ordered logit model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcomes = varname1 varname2; 
   thresholds = {vectorname | (refvar=varname)}; 
   model = <building blocks>; 

The data structure specification, keep/drop condition, and numerator/denominator statement 
are described in Section 13.3.1.  The other statements are documented here. 

outcomes = varname1 varname2; 

The ordered logit outcome variable, with unknown thresholds, is defined to be a positive 
integer in a pre-specified contiguous range, say Y K= 1 2, , ," , or some range of these values.  For 
example, individuals may be asked to rank their health status as poor, fair, good, very good, or 
excellent.  Underlying their response is actual health status, presumably a continuous variable.  
Depending on the continuous value of health status and the respondent’s perception of what 
thresholds separate poor, fair, good, very good, and excellent health, the respondent will provide a 
health category.  For estimation, the categories need to be converted to contiguous integers, such 
that the lowest category is assigned a “1” and higher categories higher values.  But what if a 
respondent is not sure about his category, or refuses to narrow it down?  For example, he only 
states that his health is good or very good.  aML is capable of dealing with such ranges of 
responses.  In fact, it always requires you to specify a range.  Most of the time, that range consists 
of just one category, but any contiguous range is acceptable.   
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The outcome is represented by two positive integer-valued variables (or expressions), denoted 
above by varname1 and varname2.  The values of varname1 and varname2 represent the 
subscript numbers of the lower and upper thresholds, respectively, of the interval in which an 
underlying real values index function value lies, as explained below.   

thresholds = {vectorname | (refvar=varname)}; 

The “threshold” statement in the binary logit model is optional; the “thresholds” 
statement here is mandatory.  The threshold values are parameters that are organized in a vector, 
and may be estimated (or fixed at pre-specified values).  For example: 

define vector Cutoffs; dim=4; 
ordered logit model; ...; 
   thresholds = Cutoffs; 

or using indirect referencing, for example on the basis of age: 

define vector Young; ref=1; dim=4; 
define vector Old;   ref=2; dim=4; 
ordered logit model; ...; 
   thresholds = (refvar = 1+(age>=70)); 

The thresholds must be strictly ordered.  To prevent thresholds from crossing over during the 
iterative search procedure, we recommend that the vector be defined with the “increasing” 
option, which is done by default (page 296).  The program will abort with an error message should 
the thresholds not be strictly ordered. 

The following logic underlies these definitions.  Let the real-valued continuous index value 
underlying the qualitative outcome be y*  and the positive integer valued outcome be denoted 
y K( , , , )= 1 2 " . The correspondence between the K values of the outcome variable y and K 

intervals on the real line is determined by K-1 thresholds and is given by  

y x u y

y
y

K yK K

*

*

*

*

,= ′ + =

≤ <
≤ <

≤ <

R
S
||

T
||

−

β

τ τ
τ τ

τ τ

1
2

0 1

1 2

1

if 
if 

if 
# #

 

The end-points of the first and last intervals are defined to by τ 0 = −∞  and τ K = ∞ , respectively.  
Verify that this leaves K-1 thresholds to distinguish K categories. 

It may seem redundant to specify two variables in order to represent a single categorical 
outcome variable.  The reason for taking this seemingly complicated route is the ability to handle 
censored and multi-category cases.  The formulation is flexible in that outcomes corresponding to 
a set of contiguous integers is easily represented by specifying the subscripts of the thresholds 
between which the real-valued index y*  must lie. Examples include  
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1
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1
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1

2 4
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1

0 5

7

if varname1 varname2
if varname1 varname2
if varname1 varname2
if varname1 varname2
if varname1 varname2
if varname1 varname2
if varname1 varname2

τ τ
τ τ
τ τ
τ τ
τ τ
τ τ
τ τ

*

*

*

*

*

*

*

,
 

Recall that varname1 and varname2 may be expressions.  If the data only contain single-
category outcomes in, say, variable category, the outcomes may be conveniently specified as: 

outcomes = category-1  category; 

The likelihood of an outcome (integer of range of integer values) is given by the probability 
of the corresponding interval on the real line.  Take the simple example of y x u* = ′ +β , then 

P y F x F xj k k jτ τ τ β τ β≤ < = − ′ − − ′*d i b g d i , 

where F ⋅b g  denotes the cumulative logistic function, F u ub g l qc h= + −
−

1
1

exp .   

If there is an integrated residual in the ordered logit equation, say, ε , the likelihood modules 
becomes conditional on the Gauss-Hermite support point, say, e, and in the above, F x eτ β− ′ −b g  
replaces F xτ β− ′b g .  In a system of simultaneous equations involving continuous models, logit 
integrated residuals may be conditional on continuous outcomes.  aML will compute the 
conditional means and (co)variances, and compute the likelihood correspondingly. 

model = <building blocks>; 

The right-hand-side specification must always include a regressor set, parameter, or regressor 
spline.  Non-integrated residuals may not enter ordered logit specifications.  (aML always 
automatically inserts an iid logistic residual.)  Optionally, you may specify integrated residuals 
from normal or finite mixture distributions.  You may not include duration splines or ARMA(p,q), 
or CAR(1) residuals. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models and heteroskedasticity; see Section 13.3.5. 

13.8.2. Ordered Logit Models with Known Thresholds 

ordered logit model; 
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   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   threshold vars = varname1(-Inf=x1) varname2(Inf=x2); 
   model = <building blocks>; 

The data structure specification, keep/drop condition, and numerator/denominator statement 
are described in Section 13.3.1.  The other statements are documented here. 

threshold vars = varname1(-Inf=x1) varname2(Inf=x2); 

Ordered logit models with known thresholds are fully analogous to their counterparts with 
unknown thresholds, except that the thresholds are known real numbers given in the data.  There is 
no “outcome” statement; the outcome consists of an interval of which the lower and upper bound 
are specified in the “threshold vars” statement.  The lower bound is varname1, which may 
be a variable name or an expression; the upper bound varname2 may also be an expression.  
These values may be different or may be the same across observations or evaluations within 
observations.   

Ordered logit models with known thresholds are rarely estimated because of scale issues.  The 
standard deviation of the logistic residual in (ordered) logit models is fixed and cannot be 
estimated.  This property makes parameter estimates sensitive to the scale (metric) of the data 
variables that represent the thresholds.  For this reason, ordered probit models (with estimable 
standard error) are almost always preferred.  See Section 13.6.2. 

The syntax and algorithms of ordered logit models with known thresholds are analogous to 
that of their ordered probit counterparts (Section 13.6.2). 
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13.9. Hazard Models 
This section documents hazard models.  Only aspects that are specific to these types of 

models are discussed; features that are common to all types of models (such as data structure 
specification, keep/drop conditions, conditional likelihoods, the use of building blocks, and 
indirect referencing) are described in Section 13.3. 

Hazard models, also known as failure time or intensity models, are used in situations where 
the outcome of interest is a duration until the occurrence of some event: a recovery from an illness, 
a death, a birth, a marriage, a divorce, a machine failure, a change of jobs, et cetera (Kalbfleisch 
and Prentice, 1980).  The hazard at time t is the probability density of the event’s occurrence at 
time t, conditional on the fact that the event did not take place before time t.  The period between 
the moment at which the event became at risk of occurring and the actual occurrence is known as a 
spell or episode.  We often deal with survey data in which the event of interest has not taken place 
yet:  the patient has not yet recovered, the couple is still married, et cetera.  Such spells are known 
as open or censored spells.  Uncensored spells are also known as closed spells.  The outcome of a 
hazard process is thus a combination of (1) an indicator variable for whether the spell is censored 
or not, and (2) a duration between the moment at which the event became at risk and either the 
timing of the event (uncensored spell) or the survey date (censored spell). 

Model Statement 

hazard model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   censor = varname; 
   duration = [durvar1 durvar2]; 
   [timemarks = varname;] 
   model = <building blocks>; 

Unique Options and Features 

aML only supports hazard models with piecewise-linear log-hazard duration dependencies, 
i.e., generalized Gompertz models.  The general formulation (without interactions) is: 

ln ( ) ( )h t T t Xj j jt= ′ + ′ +γ β ε , 

where ln ( )h tj  is the log-hazard of spell j at time t.  It is a function of one or more duration 
dependencies ′γ T tj ( ) , (potentially time-varying) regressors ′β X jt , and heterogeneity ε .  Time is 
written as an argument in T t( )  to indicate that it varies continuously over the duration of the spell, 
and as a subscript in X jt  to indicate that covariates may vary over the duration of the spell, but 
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must be constant over a finite number of intervals within the spell.  Explanatory covariates add to 
the log-hazard and thus shift the hazard proportionally.  

Hazard models in aML are continuous-time hazard models.  It is, however, easy to construct 
special cases which are discrete-time hazard models, either by using logit or probit models for 
each period, or by using a hazard model with a constant baseline hazard for each period. 

The aML hazard models that most users estimate are proportional hazard models.  However, 
aML allows covariates that are interacted with duration effects, ′ ′β γX T tjt jd id i( ) , thus tilting the 
baseline log-hazard pattern.  With this type of model, aML supports some non-proportional hazard 
models. 

There may be multiple sources of duration dependence.  For example, the hazard of mortality 
may be a function of the person’s age (to reflect the general risk pattern) and calendar time (to 
reflect time trends, for example due to medical innovations.)  Using other software packages, one 
typically accounts for the effect of calendar time by including year of birth as a non-time-varying 
covariate (in which case medical innovation during the person’s life is ignored) or current year as 
a time-varying covariate (in which case the effect of calendar time is a discrete step function.)  
Incorporating calendar time as a duration dependency captures its effect continuously.  
Furthermore, there is no need for creating time-varying covariates, so the data remain compact.  
We often refer to multiple duration dependencies as multiple “clocks”, because the various effects 
start at different points in time. 

There may be heterogeneity in the hazard of the event occurrence.  Both the normal and finite 
mixture distributions are supported.  In the equation above, we denoted heterogeneity by ε , 
perhaps hiding that there may be multiple heterogeneity components; that they may be part of a 
multivariate distribution and be correlated with residuals in other processes; and that there may be 
residuals with independent draws across hazard equations.  As a general rule, the data must 
contain at least some observations with two or more uncensored hazard spells to which a particular 
draw applies.  It is very difficult to identify heterogeneity if there is only one hazard spell per 
draw.  In such cases, the standard deviation of the heterogeneity component will tend to go to zero.  
If you observe this in your model runs, check whether your heterogeneity is statistically identified. 

Conditional on heterogeneity component ε  (which may be a vector, or may be interacted 
with parameters or regressor sets), the likelihood of hazard module j is: 

L
S t t

S t S t t tj
j

j
l

j
u l uε

ε

ε ε
b g d i

d i d i=
−

R
S|
T|

* *, ;
, , ,

if the spell is censored at time 
if the event occurred between  and 

 

where S tj ,εb g  is the survivor function at time t.  In the absence of time-varying covariates,  

S t S tj j
x j, expε β εb g b g n s= ′ +

0  
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where S tj0 b g  is the baseline survivor function at time t, i.e., the survivor function based on the 
baseline duration dependency (or dependencies) only: 

S t h dj j
t

t

b

0 0b g b g= −
R
S|
T|

U
V|
W|=

zexp τ τ
τ

, 

where lnh t T tj j0 b g b g= ′γ  and tb  denotes the beginning of the hazard spell.  In the presence of time-
varying covariates, the survivor function is given by: 

S t
S t

S tj
j i

j i

x

i

n jti

,
exp

ε
β ε

b g b g
b g

n s
=
F
HG

I
KJ−

′ +

=
∏ 0

0 11
 

where the period between the beginning of the spell and time t is divided into n intervals within 
which time-varying covariates are constant, such that t0  is the beginning of the spell and t tn = .  
The window within which an event occurred is delimited by t l  and t u .  These points in time may 
but need not correspond to time marks ti . 

Conditional on heterogeneity, these likelihood modules are independent.  The joint likelihood 
of multiple hazard spells in the presence of heterogeneity is thus found by numerically integrating-
out the heterogeneity from the product of conditional likelihoods of individual hazard modules: 

L w L ek j k
jk

K

= ∏∑
=

b g
1

, 

where wk  is the weight corresponding to the k-th support point ek .  These support points may be 
finite mixture points, or Gauss-Hermite approximations to the normal distribution.  The integral 
may consist of multiple intervals if there are multiple heterogeneity components, and may consist 
of products of sub-integrals if there are multiple draws. 

censor = varname; 
duration = [durvar1 durvar2]; 

These two statements specify the outcome variables of a hazard process, i.e., the length of the 
spell and whether it ended with an occurrence of the event of interest. 

A hazard spell may be open (“censored”) or closed (“uncensored”).  If the event occurred at 
the end of the spell, it is uncensored.  If the spell ended without occurrence of the event, it is 
censored.  Whether a spell is censored is specified in the “censor” statement with a variable or 
expression which evaluates to zero (uncensored) or one (censored). 

The “duration” statement gives the begin and end durations (relative to the moment at 
which the event became at risk of occurring) of the interval in which the event is known to have 
occurred.  Recognizing that the timing of events is rarely known precisely, aML requires that you 
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specify a window within which the event occurred.  The duration statement therefore consists of 
two variables or expressions.  If the spell is closed, durvar1 indicates the length of the period 
between the moment at which the event became at risk of occurring and the lower bound of the 
event window ( t l , above); durvar2 indicates the duration from the beginning of the spell to the 
upper bound of the event window ( t u ).  If the spell is open, durvar1 and durvar2 must be equal 
to each other, and indicate the duration from the beginning to the end of the spell.  

Uncertainty in the end point of the spell (moment at which the event occurred) is incorporated 
into the hazard probability model by specifying a pair of duration variables, rather than just one 
variable.  Oftentimes, there is additional uncertainty in the begin point of the spell (the moment at 
which the event became at risk of occurring). We suggest that you start the spell at a best-guess 
begin date.36 

All time concepts (clocks) must be measured in the same units (e.g., years, months, days, or 
minutes).  This includes (1) the duration variables indicating when the event occurred or when the 
spell is censored; (2) timemarks; (3) the initial durations of clocks (duration dependencies) that 
originated before the spell (e.g., age at the begin date of the spell, marriage duration, calendar 
time); (4) durations of clocks beginning after the beginning of the spell (e.g., conception dates 
within a marriage); and (5) nodes in the definition of splines that are used as baseline duration 
dependencies. 

You may select any time unit, as long as you are measuring time consistently across all time 
variables.  The choice is largely arbitrary, as you will obtain substantively identical results 
regardless of the unit you chose.  For most applications, we find that expressing all durations in 
years works best.  Very small units, such as days, sometimes lead to numerical imprecision, 
especially when the starting values of parameters are poor. 

The censor and duration variables must be at the same data level.  Typically, they are level 2 
variables, but any level is acceptable.  The level of the censor and duration variables dictates 
permissible levels for other variables.  For example, it would not make sense to use level 3 
variables in a keep or drop statement if the outcome variables are at level 2. 

timemarks = varname; 

This optional statement is required when your model includes time-varying covariates.  Time-
varying covariates are variables which are constant over intervals within the hazard spell, but may 
have different values across intervals.  The number of intervals is arbitrary.  Intervals need not 
have equal length, and their lengths matters for the computation of the likelihood.  Think of 
intervals as delimited by time marks.  The first interval runs from the beginning of the spell to the 

                                                           
36 Short of integrating over all possible begin dates (which requires information on the distribution of the 

begin date and possibly additional covariate values), we know of no satisfactory method for incorporating 
this type of uncertainty. 
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first time mark; the second interval runs from the first through the second time mark ; et cetera.  In 
the formulae above, these time marks were denoted by t t0 1, ,...  

Since there may be multiple intervals per spell, time marks (and time-varying covariates) are 
implemented by an additional data level.  Time marks and time-varying covariates must be one 
level lower than the model level.  For example, if the censor and duration variables are at level 2, 
time marks and time-varying covariates must be at level 3.37  If there are, say, n intervals in a 
hazard spell, then there must be (at least) n subbranches.  The time marks must be represented by a 
single variable.  The “timemarks” statement thus does not accept expressions or multiple 
variable names. 

The first time mark should not be in the data, because it always corresponds to the beginning 
of the spell, t0 0= .  With n intervals within a spell, there are thus n (level 3) subbranches to the 
(level 2) data branch that contains the censor and duration variables.  The n subbranches contain n 
time marks t tn1,...,  and n sets of time-varying covariate values corresponding to their values in 
the n intervals. 

Time marks must be measured in the same time unit as the duration variables (typically, in 
years), and are interpreted relative to the beginning of the spell.  Time marks must thus all be 
positive; a value of, say, 3 implies 3 time units (years) since the beginning of the spell.  Time 
marks must also be increasing, though not necessarily strictly increasing.  The last time mark must 
be at least as large as the upper bound of the event window ( t u , specified as durvar2); 
otherwise, the program would not know the value of time-varying covariates beyond the last time 
mark.  Time marks beyond t u  are ignored. 

model = <building blocks>; 

Hazard process outcomes may be explained by duration dependencies ′γ T tj ( ) , covariates 
′β X jt , and heterogeneity ε .  These translate into the following building blocks.  Duration 

dependencies are “duration splines,” based on defined splines.  Covariates typically enter through 
regressor sets, but regressor splines are also accepted.  Heterogeneity is in the form of one or more 
residuals.  Since a closed form solution of the likelihood function is generally not available, these 
residuals must be integrated out numerically.  Heterogeneity thus enters in the form of integrated 
residuals.  These may be part of a normal or a finite mixture distribution. 

Regressor splines are allowed, but they rarely offer any added benefit over regressor sets with 
splines.  The main difference between duration splines and regressor splines is that the effect of a 
duration spline continuously changes over the duration of the spell.  The effect of a regressor 
spline is constant or stepwise constant.  It is determined by the value of the transformation variable 

                                                           
37 Section 10.5 suggests that you may collapse all levels to level 2, if this is convenient given the 

structure of your (SAS, Stata, SPSS) data.  This is not an option for the level containing time marks and time-
varying covariates. 
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as of the beginning of the spell (if the variable is at the same or higher level as the censor and 
duration variables), or stepwise throughout the spell (if the variable is time-varying). 

There must always be at least one duration spline.  All other building blocks are optional.  
Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models, heteroskedasticity in variance components, and even non-
proportional hazard models; see Section 13.3.5.  Specifically, the interaction of a regressor set and 
a duration dependency, ′ ′β γX T tjt jd id i( ) , results in a non-proportional hazard model.  In that 
model, covariates do not proportionally shift the hazard, but instead tilts the baseline duration 
dependency. 

Baseline Duration Pattern 

The baseline duration pattern is the model’s dependency on time without any covariates or 
heterogeneity.  In the model above, it is represented by ′γ T tj b g .  Unlike most other hazard 
software packages, aML allows for multiple additive duration patterns, i.e., a dependency on 
multiple durations (since the time the event became at risk of occurring, since birth, since 
marriage, since divorce, since graduation, since some event that occurred during the spell, et 
cetera). 

All hazard model statements must have at least one duration dependence, which must be 
piecewise-linear (piecewise-Gompertz).  A constant baseline hazard may be achieved by defining 
a spline with intercept and without nodes, and fixing the slope coefficient to zero.  A Gompertz 
(linear) log-hazard may be specified by defining a spline without nodes, so that the slope is the 
Gompertz slope.  A stepwise-constant hazard may be achieved by estimating regression 
coefficient on time-varying indicator variables (possibly on-the-fly off a single time-varying 
covariate) which flag individual segments.  (For technical reasons, you would still need to include 
a dummy duration spline with slope fixed to zero.)   

Piecewise-linear duration patterns are very attractive because they adjust to any pattern in the 
data (with sufficiently many nodes), and because linear combinations of piecewise-linear patterns 
are again piecewise-linear.  Formally, the baseline hazard duration is based on the following 
transformation of the spell duration (the duration since the moment that the event became at risk of 
occurring), t: 
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where ν ν ν1 2, , ," n  denote the nodes.  The vector of slopes, γ  thus consists of n+1 slope 
coefficients(!)  aML allows arbitrary numbers of nodes.  If the spline was defined with an 
intercept, vector T t( )  contains an extra “1” as its first element; γ  then has dimension n+2, where 
the first element is the intercept. 

Duration dependencies are specified with “duration spline” building blocks, abbreviable 
to “durspline”.  The word “duration” serves to distinguish duration splines from regressor 
splines.  Duration splines are specified as follows: 

durspline(origin=varname, ref=splinename) 

or 

durspline(origin=varname, refvar=varname) 

where the varname in both the origin and refvar may be the name of a variable or an expression.  
Very commonly, hazard models contain a duration spline with “origin=0” to indicate that the 
clock starts ticking at the beginning of the spell.  The difference between direct (ref) and indirect 
(refvar) referencing is explained in Sections 13.3.3 and 13.3.4. 

The “origin” specification indicates how long the duration clock has been ticking before the 
hazard spell starts.  Consider a model of fertility that focuses on the conception of second and 
higher-order children.  The hazard spells run from the birth of the previous child to the conception 
of the index child (if the conception takes place) or to the last time the woman is observed (if 
censored).  The main duration dependency is on duration since the beginning of the spell, capture.  
In addition, the mother’s age matters, measured since, say, her twelfth birthday.  Also, for married 
women, the duration since the wedding.  Time trends that are not explained by covariates may be 
captured by yet another duration dependency.  Explanatory covariates are defined in a regressor 
set, and there may be unobserved mother-specific heterogeneity.  Variables censor, time_low, 
and time_up represent whether the spell is censored and when the event occurred: 

define durspline SpellDur; intercept; nodes = ...; 
define spline MotherAge; nodes = 8 18; 
define spline MarDur; ref=1; nodes = ...; 
define spline Time1980; nodes = -10 5; 
define regset BetaX; var = ...; 
define normal distribution; numintpoints=6; dim=1; name=eps; 
 
hazard model;  keep if (parity>=2); 
   censor=censor;  duration=time_low time_up; 
   model = durspline(origin=0, ref=SpellDur) + 
           durspline(origin=age-12, ref=MotherAge) + 
           durspline(origin=mardur, refvar=married) + 
           durspline(origin=year-1980, ref=Time1980) + 
           regset BetaX + 
           intres(draw=1, ref=eps); 
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The example concisely illustrates many features.  For details please refer to sections above 
pertaining to splines (13.2.3), regressor sets (13.2.2), and normal distributions (13.2.6).  The main 
duration dependency is on spell duration (SpellDur).  We defined its spline with an intercept; 
equivalently, we could have defined the regressor set with an intercept.  Note that its origin 
corresponds to the beginning of the spell (origin=0).  The clock on maternal age (spline 
MotherAge) starts ticking at the woman’s twelfth birthday (origin=age-12), so the nodes at 8 
and 18 years correspond to ages 20 and 30.  The marriage duration spline (MarDur) should only 
apply for married women.  We therefore indirectly referenced it with reference variable 
“married”.  If this variable is one, aML substitutes the spline that has a reference variable equal 
to one, which is MarDur.  If married=0, the spline drops out of the equation (see Section 13.3.4).  
To make sure you really intended this effect, aML by default checks that the origin variable, 
mardur, is 99999 if the reference variable is zero.  You may switch off this check; see the 
check99999 option on page 281.  The time trend is defined relative to 1980 (origin=year-
1980).  The nodes of the Time1980 spline thus correspond to 1980-10=1970 and 1980+5=1985.  
We label the use of multiple duration dependencies as “overlapping splines.”  The regressor set, 
BetaX, should not contain an intercept since one of the splines (SpellDur) is already defined 
with an intercept.  It is completely arbitrary whether you specify an intercept as part of a spline or 
a regressor set, provided that the building block always enters the equation.  The integrated 
residual is specified with “draw=1” so that all hazard spells receive the same draw of this 
component.  (That same draw should also enter the hazard spell for the first conception, not shown 
here.) 

The intercept in this example corresponds to the log-hazard at the beginning of the spell if the 
woman were 12 years of age, if she were unmarried or married on the day of the beginning of the 
spell, if it were 1980, and if all covariates were zero.  We arbitrarily selected maternal age 12 and 
calendar time 1980 as reference points.  If you change these reference points, the intercept will 
adjust accordingly, and all other coefficients will remain unchanged. 

The figure illustrates 
overlapping splines.  We show 
just two duration dependencies, 
namely on maternal age and 
duration since the last birth.  
Consider two women that are 
both born on January 1, 1970.  
Assume the age effect is linearly 
increasing from age 12 to 20, 
constant until age 30, and 
decreasing thereafter; see the 
“age” pattern in the figure.  
Assume that the risk of 
conceiving due to duration since the last birth increases moderately for twelve months, then more 
steeply for two years, and decreases thereafter.  One woman gives birth to her first child on her 18-

L
o

g
-h

a
za

rd

Calendar time
1982 1988 1994 2000

-.2

0

.2

.4

.6

.8

1

1.2

1.4

dur1
age

age+dur1 age+dur2

dur2

age



378 13.9.  Hazard Models 

 

R
ef

er
en

ce
 M

an
ua

l 

th birthday, so her second conception spells starts on 1/1/1988; see “dur1”.  Her age and spell 
duration effect combine to form the overall baseline duration dependency, “age+dur1”.  
Similarly, the other woman gave birth to her first baby and started her second conception spell on 
1/1/1994; see “dur2.”  Her combined baseline dependency is illustrated by “age+dur2.”  Due to 
differences in their ages at the beginning of the spell, the two women experience different baseline 
dependencies.  This difference allows for separate identification of age and spell duration patterns.  
Other duration dependencies may be added analogously.  Section 5.9 contains a more elaborate 
illustration. 

In the example, most duration clocks started ticking before or at the beginning of the spell, 
i.e., the origin variable was positive.  (The exception is the origin of time, 1980, which may be 
before, during, or after the spell; see below.)  However, the origin of a clock may also be 
sometime during the spell.  For example, a woman or couple may react to the death of a previous 
child by attempting to replace the lost child (Panis and Lillard, 1993).  Suppose there are up to 
eight children per woman, each of which may die and affect subsequent fertility behavior.  Their 
effects may be captured by: 

define spline ChildDeath; ref=10; nodes=...; 
    intercept; effect=right; 
<other definitions> 
hazard model; 
   <other statements> 
   model = durspline(origin=kiddur1, ref=10*kiddied1) + 
           durspline(origin=kiddur2, ref=10*kiddied2) + 
           durspline(origin=kiddur3, ref=10*kiddied3) + 
           durspline(origin=kiddur4, ref=10*kiddied4) + 
           durspline(origin=kiddur5, ref=10*kiddied5) + 
           durspline(origin=kiddur6, ref=10*kiddied6) + 
           durspline(origin=kiddur7, ref=10*kiddied7) + 
           durspline(origin=kiddur8, ref=10*kiddied8) + 
           <other building blocks>; 

We defined one spline, ChildDeath, to capture the effect of a child’s death.  It should only enter 
the equation for couples that experience a child’s death.  We therefore reference it indirectly using 
a reference expression equal to 10 times an indicator variable for whether a specific child died 
(kiddied1 through kiddied8).  We multiply it by 10 so that its value does not conflict with the 
marriage indicator “married”, above, which conditionally enters the marriage duration spline.  
The origin variable indicates the period from the beginning to the spell until the death of each 
child.  If a child died before the hazard spell (say, the first child dies before the second child is 
born, and the index spell is the waiting time until the third conception), the origin variable should 
be positive and the effect will be felt throughout the spell.  If a child died sometime during the 
spell, the origin variable should be negative so that its effect kicks in during the spell.  If the effect 
should not extent back to the period before the origin, such as in this example, the spline must be 
defined with the “effect=right” option.  The default (effect=full) is to extrapolate 
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backward; see page 293.  We wanted that default behavior for the calendar time effect, which 
should apply both before and after its origin, 1980.  Here, however, we want the effect of a child’s 
death to generate a jump in the hazard.  The intercept that is part of the ChildDeath spline 
generates the jump.  Note that multiple children may die, in which case the ChildDeath spline 
enters multiple times in the equation.  If a child dies after the end of the index hazard spell, the 
absolute value of the origin variable exceeds the duration variables, and the spline has no effect.  If 
a child does not die, as is of course the most common case, the kiddiedn indicator variable 
should be zero.  The kiddurn variable is then without meaning.  To confirm the integrity of the 
data, aML will check that the kiddurn variable is equal to 99999.  Also, it will check that 
relevant origins are never equal to 99999.  You may turn off those checks using the check99999 
option; see page 281 and Section 13.2.3. 

The figure illustrates the 
effect of a spline that “kicks in” 
during the spell.  It takes the 
example above of the woman 
whose second conception spell 
starts on 1/1/1994, and adds a 
duration dependence on the time 
since an older child dies.  
Assume that the effect of a 
child’s death is to make the 
hazard jump up, stay constant 
for two years, and then taper off.  
The figure shows this 
dependency for a child that dies 
five years into the conception spell.  The origin variable must thus be –5.  Note that its effect on 
the combined baseline pattern is to push the declining log-hazard sharply up. 

It is important to understand the difference between a duration spline and a spline which 
enters through a regressor set or regressor spline.  In a duration spline, the variable which is 
transformed is the duration since the beginning of the spell (possibly starting at some non-zero 
value, per the origin specification).  That duration varies continuously over the life of the spell.  In 
a regressor spline, the variable which is transformed is constant over the entire spell (if the 
variable is at the same level as the censor and duration variables) or changes discretely (if the 
variable is time-varying).  For example, if the hazard of mortality is presumed to be affected by 
medical innovations as they take place over the lifetime of the person, the effect of calendar time 
should be a duration spline.  If the hazard of mortality is presumed to be affected by the state of 
medical technology as of the person’s birth, and subsequent medical innovations do not affect the 
person’s life expectancy, then the effect of calendar time (birth cohort) should be in a regressor 
spline.  In that case, a snapshot is taken and applied over the entire spell.  The time transformation 
may equivalently be part of a regressor set. 
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While there are few or no good reasons to use regressor splines in hazard models, they 
provide a flexible tool in systems of equations in which a hazard model is combined with some 
other model type. For example, suppose the decision of an elderly person to move in with his adult 
children (a probit model) is in part determined by his log-hazard of dying at the current time.  A 
hazard equation for mortality identifies an age pattern and other determinants; that same age 
pattern now affects a probit propensity.  The age pattern is estimated off the mortality process as a 
duration spline; the same functional form now enters the probit as a regressor spline.   



13.10.  Binomial Models 381 

 

R
ef

er
en

ce
 M

an
ua

l 

13.10. Binomial Models 
This section documents binomial models.  Only aspects that are specific to these types of 

models are discussed; features that are common to all types of models (such as data structure 
specification, keep/drop conditions, conditional likelihoods, the use of building blocks, and 
indirect referencing) are described in Section 13.3. 

Model Statement 

binomial model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = varname; 
   exposure = varname; 
   probability ={linear | logistic | normprob}(<building blocks>); 

where both the outcome and the exposure may also be specified in terms of an expression rather 
than a single variable.  For example: 

exposure = exp(varname); 

Unique Options and Features 

Binomial models are used to specify the probability of an observed count value, specified in 
the outcome statement, as a function of the probability of an occurrence and the number of 
exposures.  The count outcome may be 0, 1, …, n, where n is the exposure. 

The model is specified as follows.  Let Y denote the non-negative integer-valued outcome, N 
the non-negative integer-valued number of trials or exposures ( 0 Y N≤ ≤ ), and p the probability 
of a “success,” then the probability of the observed outcome (number of successes in N trials) is 
given by  

( ) ( )Pr 1 N yyN
Y y p p

y
− 

= = − 
 

  where  
( )

!
! !

N N
y y N y

 
=  − 

. 

The probability p may be a (possibly nonlinear) function of data variables and integrated 
residuals. 

outcome = varname; 

The outcome (number of successes), Y, may be specified as a variable or expression that 
evaluates to a non-negative integer. 

exposure = varname; 
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The exposure (number of trials), N, may be specified as a variable or expression that evaluates 
to a strictly positive integer.  It should be at least as large as the outcome. 

probability = {linear | logistic | normprob}(<building blocks>); 

The probability of a success may be specified as a function of building blocks.  At a 
minimum, it must contain a regressor set, parameter, or regressor spline.  It may also contain 
integrated residuals of normal or finite mixture distributions.  Non-integrated residuals and 
duration splines are not allowed. 

You may specify the probability as equal to the sum of the building blocks, or as a logistic or 
cumulative normal probability transformation.  To illustrate, suppose the only building block is 
regressor set BetaX, mathematically represented by ′β x .  The three options are: 

• “probability = linear(regset BetaX)” corresponds to p x= ′β .  In other words, the 
linear “transformation” does not transform the building blocks. 

• “probability = logistic(regset BetaX)” corresponds to the logistic transformation 

p x= + − ′
−

1
1

exp βl qc h .  

• “probability = normprob(regset BetaX)” corresponds to the cumulative normal 

probability transformation ( ) ( ) { }1
2 21

22 exp d
x

u

p x u u
β

β π
′

−

=−∞

′= Φ = −∫ .  This transformation is 

also used in probit models, but other than that, there is no relationship with probit models. 

Both the logistic and normal probability transformations guarantee that the probability is 
between zero and one.  By contrast, the linear “transformation” carries the risk that the probability 
becomes less than zero or larger than one during the search, for some observations.  If the 
probability is not a function of parameters, you could define a parameter and use it as the 
probability: 

define parameter lambda; range=(0,1); 
binomial model;  ...;  probability = linear(par lambda); 

For probabilities that are functions of data variables or variance components, the logistic or 
probit transformations are better suited. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models and heteroskedasticity in variance components; see Section 
13.3.5. 



13.11.  Poisson Models 383 

 

R
ef

er
en

ce
 M

an
ua

l 

13.11. Poisson Models 
This section documents Poisson models.  Only aspects that are specific to these types of 

models are discussed; features that are common to all types of models (such as data structure 
specification, keep/drop conditions, conditional likelihoods, the use of building blocks, and 
indirect referencing) are described in Section 13.3. 

Model Statement 

poisson model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = varname; 
   [exposure = varname;] 
   incidence = exp(<building blocks>); 

where both the outcome and the (optional) exposure may also be specified in terms of an 
expression rather than a single variable. 

Unique Options and Features 

Poisson count models are used to specify the probability of an observed count value, specified 
in the outcome statement, as a function of the incidence of occurrences and, optionally, the level 
of exposure.  The model was first derived by Poisson (1837) as the limit of a sequence of binomial 
distributions.  (Define a binomial distribution with probability p nλ= ; draw n independent 
values from this distribution.  As n approaches infinity, the number of successes follows a Poisson 
distribution.)  From entirely different starting points, several other scholars arrived at the same 
distribution.  Johnson, Kotz, and Kemp (1992, Chapter 4) provide an interesting historical 
perspective. 

A random variable Y is said to have a Poisson distribution if 

( )Pr
!

yeY y
y

λλ−

= = ,     y = 0, 1, 2, … 

Parameter λ  is the incidence rate, i.e., the expected number of occurrences for any one outcome.  
Oftentimes, the incidence rate is conceptualized as the expected number of occurrences per period, 
and an outcome is the result of exposure to multiple periods.  To accommodate this interpretation, 
we parameterize: 

( )expE xλ β ′= ⋅ , 
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where E is the exposure and ( )exp xβ ′  the (period) incidence rate.  For multilevel extensions, 
aML support residuals.  For example: 

( )expE xλ β η′= ⋅ + . 

Both the mean and the variance of the Poisson distribution are equal to λ .  This is often 
violated by the data.  In particular, the variance often exceeds the mean.  In such cases, the 
outcome is overdispersed and the negative binomial model may be more appropriate.  See Section 
13.12. 

outcome = varname; 

The outcome (number of successes), Y, may be specified as a variable or expression that 
evaluates to a non-negative integer.  There is no upper bound on Y. 

exposure = varname; 

Optionally, the user may specify an exposure variable or expression.  This is E in the 
equations above.  It must be a strictly positive real number.  Omitting the exposure statement is 
equivalent to setting E=1. 

Some software packages support an offset variable rather than an exposure variable.  The 
offset is simply the natural logarithm of exposure.  To see this, re-write: 

( ) ( ) ( )exp exp ln expE x E x offset xλ β β β′ ′ ′= ⋅ = + = + . 

In other words, the log-exposure (offset) enters the incidence equation with a parameter that is 
fixed to one.  Indeed, suppose the data contain both exposure variable “exposure” and its 
logarithm, “offset”.  The usual specification: 

poisson model; 
   outcome = varname; 
   exposure = exposure; 
   incidence = exp(regset BetaX); 

is equivalent to: 

poisson model; 
   outcome = varname; 
   incidence = exp(offset + regset BetaX); 

incidence = exp(<building blocks>); 

The (observable part of the period) incidence rate, ( )exp xβ ′ , must also be strictly positive.  
To ensure that it is strictly positive, aML requires that you specify it as an exponentiated function 
of building blocks.  In other words, aML uses the log-link function.  The building blocks may 
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consist of regressor sets, parameters, regressor splines, and variables.  It may also contain 
integrated residuals of normal or finite mixture distributions, ( )exp xβ η′ + .  Non-integrated 
residuals and duration splines are not allowed. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models; see Section 13.3.5. 
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13.12. Negative Binomial Models 
 

! Attention former users of aML Version 1: 

There are many ways to parameterize negative binomial models.  Versions 1 and 2 
follow different parameterizations.  See Section 13.12.1 for backward compatibility of 
Version 2. 

 

This section documents negative binomial models.  Only aspects that are specific to these 
types of models are discussed; features that are common to all types of models (such as data 
structure specification, keep/drop conditions, conditional likelihoods, the use of building blocks, 
and indirect referencing) are described in Section 13.3. 

Model Statement 

negative binomial model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = varname; 
   [exposure = varname;] 
   dispersion = {<building blocks> | exp(<building blocks>)}; 
   incidence = exp(<building blocks>); 

where both the outcome and the exposure may also be specified in terms of an expression rather 
than a single variable. 

Unique Options and Features 

Much like Poisson models, negative binomial count models are used to specify the probability 
of an observed count value that may take any non-negative value.  While the Poisson distribution 
implies that the mean and the variance are equal, the negative binomial distribution allows the 
variance to be greater than the mean, i.e., allows for overdispersion.  The literature has developed 
many parameterizations of negative binomial models.  A very intuitive derivation builds on a 
Poisson model with outcome-specific heterogeneity.  Consider a Poisson distribution with 
incidence rate λ .  The incidence rate is, in part, unobserved: 

( ) ( ) ( )exp exp expx u x uλ β β′ ′= + =  
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If ( )exp u  follows a gamma distribution, the resulting distribution is negative binomial (e.g., 
Greene 2000, Section 19.9.4).  The basic parameterization in aML follows from that derivation.  
The probability distribution of negative binomial outcome Y is: 

( ) ( )
( ) ( ) ( )

11

1
Pr 1

1
yy

Y y
y

α α

α

θ θ
Γ +

= = −
Γ + Γ

, 

where Γ ⋅b g  denotes the Gamma function and 

( )
1

1 expE x
θ

α β
=

′+
. 

E is the exposure, α  is the dispersion, and ( )exp xβ ′  is the observable part of the (period) 
incidence rate.  An outcome may be the result of exposure to multiple periods.  The overall 
incidence rate is thus ( )expE xβ ′ .  Heterogeneity is allowed in θ ; see below. 

outcome = varname; 

The outcome (number of successes), Y, may be specified as a variable or expression that 
evaluates to a non-negative integer. 

exposure = varname; 

Optionally, the user may specify an exposure variable or expression.  This is E in the 
equations above.  It must be a strictly positive real number.  Omitting the exposure statement is 
equivalent to setting E=1. 

Some software packages support an offset variable rather than an exposure variable.  The 
offset is simply the natural logarithm of exposure.  To see this, re-write: 

( ) ( ) ( )exp exp ln expE x E x offset xα β α β α β′ ′ ′⋅ ⋅ = ⋅ + = ⋅ + . 

In other words, the log-exposure (offset) may be seen as entering the incidence equation with a 
parameter that is fixed to one.  Indeed, suppose the data contain both exposure variable 
“exposure” and its logarithm, “offset”.  The usual specification: 

negative binomial model; 
   outcome = varname; 
   exposure = exposure;   /*  or:  exposure = exp(offset);  */ 
   dispersion = exp(regset AlphaX); 
   incidence = exp(regset BetaX); 

is equivalent to: 

negative binomial model; 
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   outcome = varname; 
   dispersion = exp(regset AlphaX); 
   incidence = exp(offset + regset BetaX); 

dispersion =  {<building blocks> | exp(<building blocks>)}; 

This statement specifies the dispersion, α  in the equations above.  The greater α , the greater 
the variance relative to the mean.   

Dispersion may be specified directly (dispersion=<building blocks>;) or in 
exponentiated form (dispersion = exp(<building blocks>);).  For example, if 
dispersion is the same for all outcomes, it may be estimated directly as a parameter: 

define parameter Alpha; range = (0,Inf); 
negative binomial model; 
   outcome = varname; 
   dispersion = par Alpha; 
   incidence = exp(...); 

We restricted the range of the parameter to be (0,Inf), because dispersion must be positive.  
Dispersion may also be parameterized.  For example: 

define regressor set lnAlpha; var = <varlist>; 
negative binomial model; 
   outcome = varname; 
   dispersion = exp(regset lnAlpha); 
   incidence = exp(...); 

Here we exponentiated the regressor set to ensure that the dispersion remains positive. 

Dispersion may be specified as (exponentiated) regressor sets, parameters, regressor splines, 
and variables.  (Integrated) residuals and duration splines are not allowed. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models; see Section 13.3.5. 

incidence = exp(<building blocks>); 

The (observable part of the period) incidence rate, ( )exp xβ ′ , must also be strictly positive.  
To ensure that it is strictly positive, aML requires that you specify it as an exponentiated function 
of building blocks.  In other words, aML uses the log-link function.  The building blocks may 
consist of regressor sets, parameters, regressor splines, and variables.  It may also contain 
integrated residuals of normal or finite mixture distributions, ( )exp xβ η′ + .  Non-integrated 
residuals and duration splines are not allowed. 
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Recall that the negative binomial distribution may be derived as a generalization of the 
Poisson distribution, with a partly unobservable incidence rate ( )exp x uλ β ′= + .  In principle, 
there is little difference between implied residual u and residual η , except that u follows the 
gamma and η  the normal or finite mixture distribution.  Neither is identified with just one 
outcome per draw.  For η  to be identified, it needs to appear multiple times with the same draw, 
i.e., it needs to appear at a more aggregate level than the outcome.  While u represents outcome-
specific heterogeneity, η  may capture heterogeneity at the person level, or at any other level 
above the outcome level. 

Building blocks may be directly or indirectly referenced; see Sections 13.3.3 and 13.3.4, 
respectively.  Building blocks may also be freely interacted, so that you may specify a wide range 
of models, including nonlinear models; see Section 13.3.5. 

13.12.1. Negative Binomial Model in aML Version 1 

The literature has derived the negative binomial model for very diverse types of problems, 
leading to several different parameterizations.  aML’s parameterization corresponds to (a 
generalization of) the parameterization that is most commonly used in the economics literature.  
However, aML Version 1 was different.  Both the syntax and parameterization have changed.  To 
run a Version 1 control file and Version 1’s algorithms with aML Version 2, add the following to 
your control file: 

option version=1; 

This will make Version 2 behave as-if it were Version 1, thus ensuring full backward 
compatibility. 

 

! “Option version=1” makes aML behave as-if you are running aML Version 1.  
Negative binomial models are the only models for which this has material 
consequences.  The parameterizations of other models are unchanged.  See Section 
13.1.33 for additional (minor) implications of “option version=1”. 

 

Refer to the Reference Manual of aML Version 1 for details on old-style syntax and 
algorithms.  For comparison, the syntax is: 

negative binomial model; 
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
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   outcome = varname; 
   scale = exp(<building blocks>); 
   probability ={linear | logistic | normprob}(<building blocks>); 

The likelihood function is: 

( ) ( )
( ) ( ) ( )Pr 1

1
yAA y

Y y p p
A y
Γ +

= = −
Γ Γ +

, 

where Γ ⋅b g  denotes the Gamma function, A the “scale” and p the “probability.”  Similar to the 
(current) binomial model, Version 1 supported three probability transformations: 

( )( )
( )

if   linear();
1 1 exp if   logistic();

if   normprob().

x
p x

x

β
β

β

 ′


′= + −
 ′Φ

 

Similar to the current incidence function, the old-style probability function may include 
parameters, regressor sets, et cetera, as well as integrated residuals. 

An undesirable feature of the Version 1 parameterization is that higher probabilities make 
greater count outcomes less likely.  In the current parameterization, higher xβ ′  imply (lower θ  
and a) higher likelihood of greater count outcomes. 

There is virtually no risk of running your old control files and finding different results due to 
the new parameterization.  If you try running old control files unchanged, aML will complain 
about the old syntax and suggest that you add “option version=1”.  It is not allowed to mix 
old-style with current syntax or algorithms. 

 



13.13.  Tobit Models 391 

 

R
ef

er
en

ce
 M

an
ua

l 

13.13. Tobit Models 
This section documents tobit models.  Only aspects that are specific to this type of model are 

discussed; features that are common to all types of models (such as data structure specification, 
keep/drop conditions, conditional likelihoods, the use of building blocks, and indirect referencing) 
are described in Section 13.3. 

Model Statement 

tobit model;   
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = expr; 
   [lower limit = expr;] 
   [upper limit = expr;] 
   model = <building blocks>; 

The outcome is typically just the name of a variable, but it may be an expression.  For 
example: 

outcome = income; 
outcome = log(income); 
outcome = log(income+sqrt(income^2+1)); 
outcome = weight/(height^2); 
outcome = min(income, 100000); 

The tobit lower and/or upper limit are typically just scalars, but they, too, may be expressions.  
While the syntax indicates that both the lower limit and the upper limit statements are optional, 
aML requires that at least one be present.  If only a lower limit statement is specified, the left-
censored tobit applies; only an upper limit statement results in a right-censored tobit; and if both 
lower and upper limit statements are present, the tobit outcome is both left- and right-censored.  
The most common tobit model is left-censored at zero: 

lower limit = 0; 

The right-hand-side of the equation may include parameters (including elements of matrices 
and inverse matrices), regressor sets and regressor splines, integrated residuals, and non-integrated 
residuals. 

Unique Options and Features 

Tobit models must have at least one (non-integrated) residual from a normal distribution with 
independent draws for every outcome.  They may have multiple residuals (variance components) 
from normal or finite mixture distributions.  Residuals from normal distributions may be 
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integrated out (“intres”) or enter directly (“res”).  Residuals from finite mixtures must be 
integrated out.  

Discussion 

Tobit models are appropriate when an outcome that is inherently continuous is censored from 
below (left-censored) or above (right-censored).  In other words, one only observes a continuous 
outcome if that outcome falls in a certain range.  If the outcome is outside that range, there are two 
possibilities.  First, one may not observe anything about those cases, in which event the truncated 
normal model is appropriate (Section 5.3).  Second, one may observe everything about those 
cases, except for the outcome.  In that event, the censored normal density model, better known as 
the Tobit model (Tobin 1958; Judge et al., 1988) applies. 

Tobit outcomes may be left-censored, right-censored, or both.  The general formulation is: 

y x v y
y

y y
y
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where Lτ  and Uτ  are known thresholds, y*  is some latent continuous concept, and y its observed 
counterpart.  The likelihood function is: 
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If the outcome is left-censored but not right-censored, the third branch does not apply; if it is 
right-censored only, the first branch does not apply. 

The lower and upper thresholds are specified with the “lower limit” and “upper 
limit” statements, respectively.  Both may be expressions involving variables and scalars.  
Naturally, any variable in a lower or upper limit statement must be at at least the level of the 
outcome variable, i.e., at the same level or a more aggregated level.  Limit statements that involve 
a variable may be useful when the limit is data-dependent.  For example, consider a model of 
annual earnings based on the March 1988 Current Population Survey.  In that survey, earnings are 
top-coded at $99,999, i.e., incomes of $100,000 or more are reported as $99,999.  In this case, the 
model may be: 

tobit model; 
   outcome = earnings; 
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   upper limit = 99999; 
   model = ...; 

where “earnings” is a variable containing annual earnings.  (For simplicity, we ignored 
possible left-censoring.)  Now suppose we estimate a similar model based on earnings data that 
the U.S. Social Security Administration (SSA) records.  Social Security taxes are only levied on 
earnings up to the so-called contribution and benefit base (maximum taxable earnings).  For 
workers with earnings above the cap, SSA’s records show only the cap.  The contribution base is 
changed every year and climbed from $14,100 in 1975 to $84,900 in 2002.  Since the maximum 
amount changes from year to year, an analysis of multiple years needs to account for varying 
censor levels.  Suppose the data contain a variable “cap” with the applicable contribution and 
benefit base.  The model specification then is: 

tobit model; 
   outcome = earnings; 
   upper limit = cap; 
   model = ...; 

Perhaps earnings are expressed in real 2000 dollars and you forgot to deflate the cap variable 
accordingly.  If the data contain a variable “cpi” with the Consumer Price Index for the 
applicable year, with base year 2000, you may write: 

tobit model; 
   outcome = earnings; 
   upper limit = cap*100/cpi; 
   model = ...; 

Careful:  This specification is risky and may lead to undesired results.  Presumably, you converted 
annual earnings into real 2000 dollars in SAS, Stata, etc., i.e., before creating aML data.  You then 
created an ASCII data file to convert the data with raw2aml into aML format.  This may have 
involved some rounding, and the resulting earnings variable for censored observations may not be 
exactly equal to cap*100/cpi.  If the rounded earnings variable is slightly above the upper 
limit, all will be fine.  But if the rounded earnings variable is slightly below the upper limit, aML 
will think that this person earned an amount that was just below the cap, and treat it as an 
uncensored observation. 

 

! Be careful with lower and upper limits that are not integer-valued.  Rounding error 
may lead aML to conclude that a certain value is uncensored where it really is 
censored. 
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Multivariate Tobit Models 

aML supports multivariate tobit models, that is, tobit models of two or more outcomes that are 
correlated.  (aML also supports multilevel tobit models; see below.)  For example, suppose we 
wish to analyze the earnings of married couples, where both his and her earnings are subject to 
right-censoring at $99,999.  Because of assortative mating, shared environments, or other factors, 
we wish to allow for correlated residuals across spouses.  The model may be specified as follows: 

define normal distribution; dim=2; 
   name=u1; 
   name=u2; 
 
tobit model; 
   outcome = earning1; 
   upper limit = 99999; 
   model = ... + res(draw=1, ref=u1); 
 
tobit model; 
   outcome = earning2; 
   upper limit = 99999; 
   model = ... + res(draw=1, ref=u2); 

Since u1 and u2 were defined as part of the same distribution and used with the same draw, 
they will induce correlation in the two tobit models. 

For high-earnings couples with both his and her earnings above the top-code, the model 
reduces to a bivariate probit and the likelihood involves a bivariate cumulative normal 
distribution.  aML knows how to calculate cumulative normal probabilities up to trivariate.  If 
more than three tobit outcomes may be censored, the residual structure needs to be specified such 
that any correlation arises from integrated residuals only; see the next subsection. 

Multilevel Tobit Models 

aML supports multilevel tobit models.  Mathematically, these are equivalent to the 
multivariate tobit described in the previous subsection.  Suppose we want to analyze a time series 
of annual earnings of workers using the aforementioned SSA data.  The model is: 

*
*

*

if  
,   

if  it

it i it it t
it i it it

t it t

X u E
E X u E

E
β ε τ

β ε
τ τ

′ + + <
′= + + = 

≥
 

where *
itE  and itE  are true and observed earnings, respectively, and tτ  is the cap applicable in 

year t.  We could specify: 

define regset BetaX; var = ...; 
 
define normal distribution; dim=1; name=eps; 
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define normal distribution; dim=1; name=u; 
 
tobit model; 
   outcome = earnings; 
   upper limit = cap; 
   model = regset BetaX + 
           res(draw=1, ref=eps) + 
           res(draw=_iid, ref=u); 

Residual eps enters with draw=1, i.e., the same draw applies to all earnings outcomes of a 
particular observation.  Residual u enters with draw=_iid, i.e., all draws are independent.  This 
formulation is likely to run into troubles.  Consider the covariance matrix of i ituε +  for a worker 
who is observed over five years (t=1, …, 5): 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
,

2 2 2 2 2 2

2 2 2 2 2 2

u

u

u u u

u

u

ε ε ε ε ε
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ε ε ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε
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σ σ σ σ σ σ
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σ σ σ σ σ σ
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+ +

 +
 

+ 
 Σ = +
 

+ 
 + 

, 

where 2
εσ  and 2

uσ  are the variances of iε  and iu , respectively.  The likelihood for workers with 
some years of earnings at or above the cap involves cumulative normal probabilities with this type 
of covariance matrix.  As noted above, aML can only evaluate such matrices up to trivariate.  
More than three years of earnings above the cap will stop the program.  It is very easy to 
circumvent this issue:  integrate-out the higher-level residual(s).  In other words, the model 
statement should be: 

tobit model; 
   outcome = earnings; 
   upper limit = cap; 
   model = regset BetaX + 
           intres(draw=1, ref=eps) +  /* intres, not res!  */ 
           res(draw=_iid, ref=u); 

The issue is identical to the one resulting from correlated residuals in probit models, discussed 
in more detail in Section 4.1. 

Do-It-Yourself Tobit 

The tobit model may be viewed as a switching regression model, where the likelihood 
switches between a normal density function (for uncensored outcomes) and a cumulative normal 
probability (for censored outcomes).  In other words, a tobit model is simply a combination of a 
continuous model and a probit model.  (Indeed, the word “tobit” is derived from “probit” and the 
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surname of the scholar who first discussed the tobit model, James Tobin.)  Recall the simple tobit 
model explaining hours worked of Section 2.9: 

tobit model; 
   outcome = hours; 
   lower limit=0; 
   model = regset BetaX + res(draw=1, ref=v); 

This model may equivalently be specified as follows: 

continuous model; keep if hours>0; 
   outcome = hours; 
   model = regset BetaX + res(draw=1, ref=v); 
 
probit model; keep if hours<=0; 
   outcome = hours; 
   model = regset BetaX + res(draw=1, ref=v); 

The continuous model only applies if outcome variable hours is greater than zero, i.e., 
uncensored.  The probit model applies if the outcome is less than or equal to zero, i.e., censored.  
The rest of the control file is identical to the tobit specification (but see below for integrated 
residuals).  The output will also be identical, except of course for the section that reports model 
specifications and summary statistics of the outcomes. 

You may wonder why we explicitly specified a residual in the probit model, res(draw=1, 
ref=v).  The standard deviation of a residual is not identified in a probit model, and virtually all 
statistical estimation software packages therefore assume an independent and identically 
distributed standard normal residual in probit models.  In default behavior, aML is no exception 
(Sections 2.1.4 and 13.5), but aML allows the user to explicitly specify a residual.  In the do-it-
yourself tobit model, the residual is not standard but has a non-unit standard deviation.  This 
therefore needs to be specified explicitly.  By using the same residual v in the continuous and 
probit models, the same standard deviation applies.  The standard deviation is identified off 
uncensored outcomes only. 

You may also wonder why we specified “outcome = hours” in the probit, where 
“outcome = 0” seems to be equivalent and perhaps more intuitive.  In this particular case, 
either specification would yield the desired result.  However, this is only true because the data 
contain a single level.  More generally, aML needs to know how many outcomes there are per 
observation, i.e., how often a model statement contributes an equation to the likelihood.  If an 
outcome variable is at level 1, there can only be one outcome per observation.  If an outcome 
variable is at a lower (more disaggregated) level, there may be repeated outcomes and thus, 
somewhat loosely speaking, multiple likelihood modules.  If the data contain multiple levels, aML 
will not accept “outcome = 0” because of ambiguity in the number of times that the model 
statements contributes to the likelihood. 
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A top-censored tobit model, i.e., a tobit model with an upper limit, may also be re-written as a 
conditional probit and a continuous model.  In that case, the probit outcome must be one.  Since it 
also needs to involve a variable name, one could write “outcome=varname-varname+1” or 
anything else that evaluates to one.  A dual-censored tobit with both lower and upper limit may be 
re-written as two conditional probit models and one conditional continuous model. 

The above tobit model had a zero lower limit.  For non-zero lower or upper limits, the probit 
portion of the do-it-yourself specification needs to be adjusted to explicitly state that the threshold 
is some non-zero number.  If the limit does not vary across observations, this is most easily 
accomplished by the (optional) threshold statement.  For example, 

tobit model; 
outcome = varname; 
lower limit = 40; 
model = ...; 

is equivalent to: 

continuous model; keep if varname>40; 
   outcome = varname; 
   model = ...; 
 
define parameter Tau; 
 
probit model; keep if varname<=40; 
   outcome = varname-varname;  /* little trick to get zero */ 
   threshold = Tau; 
   model = ...; 

where parameter Tau is initialized to 40 and not estimated.  Parameters were introduced above in 
Section 2.5.1; Section 13.2.1 contains a full description.  Section 13.6.1 provides details on the 
threshold statement in probit models. 

There is an additional issue with do-it-yourself specifications of multilevel tobit models.  As 
explained above, higher-level residuals must be integrated-out in tobit model specifications 
because otherwise there may be too many correlated probit modules.  Obviously, these integrated 
residuals must remain integrated-out in the probit branch of the do-it-yourself specification.  But 
what about the continuous branch?  Higher-level residuals in continuous models may but need not 
be integrated-out, because a closed-form solution to the likelihood exists.  There is one exception, 
for technical reasons:  higher-level residuals with multiple draws may not be integrated out of 
continuous modules.  This is not an issue with two-level models, because there is only one draw of 
the higher-level residual (one value per observation).  With three or more levels, however, there 
will be multiple draws for at least one residual (multiple units within one observation and above 
the lowest level).  For that reason, aML does not integrate-out any residuals in the continuous 
branch of multilevel tobit models.  Consider a three-level problem, such as multiple test scores 
(level 3) by multiple students (level 2), nested in schools (level 1).  We want residuals at the 
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school-level (eps), student-level (eta), and test-level (u).  Suppose the data contain variable 
“student” that uniquely identifies students.  The following model: 

tobit model; 
   outcome=...; 
   lower limit=...; 
   model = ... + 
           intres(draw=1, ref=eps) + 
           intres(draw=student, ref=eta) + 
           res(draw=_iid, ref=u); 

is equivalent to: 

probit model; keep if ...; 
   outcome=...; 
   threshold=...; 
   model = ... + 
           intres(draw=1, ref=eps) + 
           intres(draw=student, ref=eta) + 
           res(draw=_iid, ref=u); 
 

continuous model; keep if ...; 
   outcome=...; 
   model = ... + 
           res(draw=1, ref=eps) +        /* res, not intres!  */ 
           res(draw=student, ref=eta) +  /* res, not intres!  */ 
           res(draw=_iid, ref=u); 

Again, the noteworthy feature is that integrated residuals in tobit models are not integrated-out in 
the continuous branch.  By its very nature, numerical integration yields an approximation to the 
likelihood.  By not integrating-out any residuals in continuous branches, aML reduces the 
resulting inaccuracy.38   

 

                                                           
38 As noted, one could integrate-out higher-level residuals in the continuous branch in problems with 

only two levels.  This is the approach that Stata’s xttobit command takes.  Stata does not support models 
with three or more levels. 
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13.14. Multinomial Logit Models 
This section documents multinomial logit models.  Only aspects that are specific to this type 

of model are discussed; features that are common to all types of models (such as data structure 
specification, keep/drop conditions, conditional likelihoods, the use of building blocks, and 
indirect referencing) are described in Section 13.3. 

Model Statement 

multinomial logit model;   
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = expr; 
   model n1 = <building blocks>; 
   model n2 = <building blocks>; 
   [model n3 = <building blocks>;] 
   [model n4 = <building blocks>;] 
   <et cetera> 

The outcome is typically just a variable, but it may be an expression.  Outcomes must be 
integer-valued. 

There should be a model specification for every potential outcome except for the omitted 
category.  Integers n1, n2, n3, n4, etc. correspond to the outcomes being distinguished; all other 
outcome values are grouped in the omitted category.  There is no hard limit to the number of 
categories that may be distinguished. 

The right-hand-side of the model equations may include parameters (including elements of 
matrices and inverse matrices), regressor sets and regressor splines, and integrated residuals.  
Implicitly, a non-integrated logistic residual is present in each model equation, but this residual 
should not be specified.  Integrated residuals may be distributed normally or as a finite mixture. 

Unique Options and Features 

Multinomial logit models are appropriate when the outcome of interest may take on a limited 
number of values that are not ordered.  (If they are ordered, the ordered logit or ordered probit 
model is more appropriate.)  For example, someone may choose among various modes of 
transportation (walking, bicycle, own motorized transportation, public transportation); a household 
may own a residency, rent a residency, or be otherwise accommodated; a worker may be 
employed in agriculture, manufacturing, services, or other industry; et cetera.  The categories must 
be mutually exclusive and exhaustive, possibly through the inclusion of a residual category. 
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Unlike most other model specifications, the multinomial logit model requires multiple model 
specifications, namely one for each potential outcome, except for the omitted category.  If no 
category is omitted, the model is not identified without additional restrictions on parameters or 
identification from other parts of a multiprocess model. 

Discussion 

Consider an outcome that may take J distinct values.  Denote the probability that choice j 
(j=1,…,J) is selected by jP .  The likelihood function of the standard multinomial logit model is: 
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This model is defined by J sets of parameters jβ .  However, not all parameters are statistically 
identified.  We typically normalize all parameters associated with a certain category to be zero.39  
Suppose this omitted category is the J-th category ( 0Jβ = ), so that the likelihood function 
reduces to: 
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The choice of omitted category is entirely arbitrary.  Also, while the potential choices in our 
mathematical notation are numbered consecutively from 1 to J, no order is implied and any set of 
integer-valued choices may be specified.  Indeed, multinomial models treat all categories on the 
same footing; any reversal of assigned categories results in equivalent estimates. 

Most model estimation software packages require that the same set of explanatory covariates 
X enters in all choice equations.  While not expressed in the above likelihood equations, aML is 
more general in that it accepts different regressors in all choice equations.   

Interpretation of multinomial logit parameters is not straightforward.  For example, the 
marginal effect of covariate kX  on the probability that choice j will be selected is: 

                                                           
39 aML does not require that you normalize in this way.  You may specify an exhaustive set of choices 

and impose any number of identifying restrictions in the starting values.  Also, in a multiprocess model, you 
could identify one set of parameters in a related model and estimate the full set of J parameters jβ . 
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where ikβ  is the k-th element of coefficient vector iβ .  This probability depends on the point of 
evaluation, just like it does in the standard logit model.  Furthermore, it depends on all 
probabilities 1P  through JP , and can change signs depending on those probabilities.  In other 
words, the multinomial logit model does not share the monotonicity property of standard logit 
models, where larger values of a covariate with a positive coefficient imply larger values of the 
probability.   

Many people find it easier to interpret multinomial logit parameters through the concept of 
log-odds ratios.  For example, the log-odds ratio of categories j and l is: 
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This log-odds ratio depends only on parameters jβ  and lβ .  If the choice set were to expand or 
contract from the current J options, the log-odds ratio of categories j and l would not be affected.  
This property is known as independence from irrelevant alternatives (IIA).  It is an undesirable 
property, because it also applies to highly relevant additional alternatives.40  The multinomial 
probit model, by contrast, does not suffer from this property (Section 2.6). 

                                                           
40 The standard example is the “red bus, blue bus” example.  Suppose one chooses among several modes 

of transportation, say, non-motorized (n), own motorized (o), and public transportation by bus (r), with 
certain probabilities.  Suppose all buses are red.  The odds ratio of red bus versus, say, non-motorized 
transportation, r nP P , reflects the relative preference of riding a red bus versus using non-motorized 
transportation.  Now suppose a new public bus service (b) is introduced that is identical to the existing bus 
service, except that its buses are blue in color.  We estimate a new multinomial logit model that includes the 
new blue bus service as a separate choice.  The interpretation of the log-odds ratio of red bus versus non-
motorized transportation, r nP P , remains the same as before, namely the relative preference of riding a red 
bus versus using non-motorized transportation.  Its value should therefore not change.  However, no change 
in the odds ratio can only occur if the blue buses gain market share by proportional decreases of the market 
shares of other transportation modes.  This is implausible.  It is much more likely that blue buses dent the 
market share of red buses by far more than of other modes.  Indeed, in practice, the introduction of a new 
choice that is similar to an existing choice does affect the odds ratios.  This unpatable result is a consequence 
of the fact that the multinomial probit treats all outcomes on the same footing, without any account of 
similarities or dissimilarities among potential outcomes.  Then why do analysts not worry very much about 
the undesirable IIA property?  Key is to interpret the coefficients in the context of the empirical setting.  In 
other words, instead of assigning a very specific interpretation to an odds ratio (“relative preference of riding 
a red bus versus using non-motorized transportation”), one should interpret the coefficients as reflective of 
relative preferences among the alternatives offered.  If some alternatives are clearly very similar, consider 
estimating a multinomial probit model (Section 13.15) or a nested logit model (not supported by aML). 
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Suppose l is the omitted category.  The log-odds ratio then simplifies to: 

omitted

log j
j

P
X

P
β

 
′= 

 
. 

It follows that a one-unit increase in covariate kX  changes odds ratio omittedjP P  by a factor 

( )exp jkβ .  Some people therefore prefer to report exponentiated (multinomial) logit coefficients.  
It is, of course, straightforward to convert coefficient estimates into their exponentiated 
counterparts.  Note that the standard deviation of ( )exp jkβ  is ( )exp

jkjk ββ σ , where 
jkβσ  is the 

standard deviation of jkβ . 

Multilevel Multinomial Logit 

aML supports multilevel extensions of multinomial logit models.  The outcome variable may 
be at any level.  Repeated outcomes within observations result in a multilevel multinomial logit 
model.  The outcomes may be correlated within observation through residuals (unobserved 
heterogeneity).  For example, the following model specification adds observation-specific 
unobserved heterogeneity: 

define normal distribution; dim=1;  
   number of integration points=6; 
   name=eps; 
 
multinomial logit model; 
   outcome = occ; 
   model 2 = ... + intres(draw=1, ref=eps); 
   model 3 = ... + intres(draw=1, ref=eps); 
   model 4 = ... + intres(draw=1, ref=eps); 

The residual must be integrated-out, since no closed form solution to the likelihood exists.  
Residuals may be from normal or finite mixture distributions.   

The usual rules on residual specifications apply, that is, you may include multiple residuals, 
multiply them by parameters or regressor sets, etc.  There is one restriction:  residual draws must 
be the same in all model specifications of a particular multinomial logit.  For example, the 
following will generate an error message: 

multinomial logit model; 
   outcome = occ; 
   model 2 = ... + intres(draw=1, ref=eps); 
   model 3 = ... + intres(draw=2, ref=eps); 
   model 4 = ... + intres(draw=3, ref=eps); 
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In practice, this is not a restriction; we cannot think of a case in which it would make sense to have 
multiple draws of residuals belonging to the same distribution in one outcome module.  Of course, 
multiple residual draws may be specified across different outcomes. 

Residuals may be correlated with residuals in other model statements, leading to multinomial 
logit models in a multiprocess setting. 
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13.15. Multinomial Probit Models 
This section documents multinomial probit models.  Only aspects that are specific to this type 

of model are discussed; features that are common to all types of models (such as data structure 
specification, keep/drop conditions, conditional likelihoods, the use of building blocks, and 
indirect referencing) are described in Section 13.3. 

Model Statement 

multinomial probit model;   
   [data structure = n;] 
   [{keep | drop} if condition;] 
   [numerator;] [denominator;] 
   outcome = expr; 
   model n1 = <building blocks>; 
   model n2 = <building blocks>; 
   [model n3 = <building blocks>;] 

The outcome is typically just a variable, but it may be an expression.  Outcomes must be 
integer-valued. 

There should be a model specification for every potential outcome except for the omitted 
category.  Integers n1, n2, and n3 correspond to the outcomes being distinguished; all other 
outcome values are grouped in the omitted category.  There may at most be four distinct 
categories, i.e., at most three model equation specifications.  (The multinomial logit model does 
not have this limitations; see Section 13.14.) 

The right-hand-side of the model equations may include parameters (including elements of 
matrices and inverse matrices), regressor sets and regressor splines, integrated residuals, and non-
integrated normal residuals.  At a minimum, there must be a non-integrated, normally distributed 
residual in each model equation.  (In simple and ordered probit models, aML assumes an 
independent standard normal residual if none is specified.  There is no such default behavior in 
multinomial probit models, in part because correlated residuals are a key feature of multinomial 
probit models.)  These residuals should be different from one another but belong to the same 
distribution and be specified with the same draw in all model statements of a multinomial probit.41  
Consider a categorical variable that can take on values 0, 1, 2, or 3.  We arbitrarily select 0 to be 
the omitted category.  The typical, bare bones multinomial probit model would be: 

define regset XBeta1; var = ...; 

                                                           
41 Making its usual assumption that the user knows best, aML will not object to multinomial probit 

specifications with the same residual appearing in multiple model specifications or to uncorrelated residuals.  
However, it will object to residuals from the same distribution but with different draws—that would not make 
sense and is not technically feasible. 
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define regset XBeta2; var = ...;  /* same variable list  */ 
define regset XBeta3; var = ...;  /* same variable list  */ 
define normal distribution; dim=3; 
   name=u1;  name=u2;  name=u3; 
 
multinomial probit model; 
   outcome=Y; 
   model 1 = regset XBeta1 + res(draw=1, ref=u1); 
   model 2 = regset XBeta2 + res(draw=1, ref=u2); 
   model 3 = regset XBeta3 + res(draw=1, ref=u3); 

The variables in the three regressor sets are typically the same, but aML allows different variables.  
Residuals u1, u2, and u3 are correlated because they are defined as part of the same distribution 
and enter with the same draw.  In the starting values, the standard deviations of u1, u2, and u3 
should be fixed to one for the standard multinomial probit model; aML permits other values and 
even estimable standard errors, provided they are identified from some other part of a larger 
model. 

Integrated residuals, if any, may be distributed normally or as a finite mixture. 

Unique Options and Features 

Multinomial probit models are appropriate when the outcome of interest may take on a 
limited number of values that are not ordered.  (If they are ordered, the ordered probit model is 
more appropriate.)  For example, someone may choose among various modes of transportation 
(walking, bicycle, own motorized transportation, public transportation); a household may own a 
residency, rent a residency, or be otherwise accommodated; a worker may be employed in 
agriculture, manufacturing, services, or other industry; et cetera.  The categories must be mutually 
exclusive and exhaustive, possibly through the inclusion of a residual category. 

The main difference between a multinomial probit and a multinomial logit model is that the 
former allows correlation among its residuals.  This feature allows it to capture the degree of 
similarity across alternatives, so that the multinomial logit’s undesirable independence of 
irrelevant alternatives (IIA) property does not apply.  Unfortunately, the multinomial probit allows 
only up to four alternatives (including the omitted category); the multinomial logit does not have 
this limitation. 

Unlike most other model specifications, the multinomial probit model requires multiple model 
specifications, namely one for each potential outcome, except for the omitted category.  If no 
category is omitted, the model is not identified without additional restrictions on parameters or 
identification from other parts of a multiprocess model. 

Discussion 

Consider an outcome that may take J distinct values.  Each alternative has a pay-off (utility, 
value, degree of attractiveness).  The alternative with the highest pay-off is chosen.  We only 
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observe which alternative is chosen.  Nothing is known about the magnitude of the pay-offs, the 
relative ranking of alternatives that were not chosen, or how much more attractive the chosen 
alternative was than the others.  This implies that two normalizations are needed.  Only relative 
statements can be made, so the pay-off of one alternative needs to be fixed.  This is typically done 
by setting its value to zero.  Consider the following J pay-off equations: 

*
1 1 1

*
1 1 1
* 0

J J J

J

y X u

y X u
y

β

β− − −

′= +

′= +
=

#
 

We arbitrarily normalized the last category, i.e., the last category is the omitted category.  Any 
other omitted category would yield equivalent results. 

Since the magnitude of pay-offs is unknown and irrelevant, the scale needs to be normalized.  
This is typically done by setting the standard deviations of residuals to one:  

1 2 1 1Jσ σ σ −= = = =… , where jσ  is the standard deviation of ju .  Denote the probability that 
choice j (j=1,…,J) is selected by jP .  The likelihood function of the standard multinomial probit 
model is: 

( )
( )

( )

* * * * * *
1 1 2 1 3 1

* * * * * *
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1 2 1
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Each probability involves J-1 inequalities.  In other words, each probability requires the evaluation 
of a cumulative normal integral of dimension J-1.  Such integrals become very burdensome for 
larger values of J.  aML supports up to trivariate, i.e., there may be at most four alternatives 
( 4J ≤ ).   

The coding of alternatives and the choice of omitted category are entirely arbitrary.  
Regardless of the codes assigned to alternatives, no order is implied.  Any set of integer-valued 
choices may be specified.   

Most model estimation software packages that support multinomial probit models require that 
the same set of explanatory covariates X enters in all choice equations.  While not expressed in the 
above pay-off equations, aML is more general in that it accepts different regressors in all pay-off 
equations.   

Multilevel Multinomial Probit 

aML supports multilevel extensions of multinomial probit models.  The outcome variable may 
be at any level.  Repeated outcomes within observations result in a multilevel multinomial probit 
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model.  The outcomes may be correlated within observation through one or more additional 
residual (unobserved heterogeneity).  For example, consider a model of occupational choice.  The 
unit of analysis is a person; we have panel data with annual information on occupation and other 
relevant variables.  An illustrative model is: 

*
,1 1 ,1

*
, 1 1 , 1

*
, 0

t t t

t J J t t J

t J

y X u

y X u
y

β ε

β ε− − −

′= + +

′= + +
=

#
 

where the t–subscript denotes the year of the panel survey.  We suppressed the observation 
(person) subscript.  The corresponding data contain two levels.  Level 1 is the person, level 2 an 
annual survey.  Key variables at level 2 are year (denoting the year of the survey) and occ 
(occupational category in that year).  The following model specification estimates the above 
multilevel multinomial probit model with person-specific unobserved heterogeneity: 

define normal distribution; dim=3;  
   name=u1;  name=u2;  name=u3; 
define normal distribution; dim=1; 
   number of integration points=6; 
   name=eps; 
 
multinomial probit model; 
   outcome = occ; 
   model 1 = ... +  
             intres(draw=1, ref=eps) + res(draw=year, ref=u1); 
   model 2 = ... +  
             intres(draw=1, ref=eps) + res(draw=year, ref=u2); 
   model 3 = ... +  
             intres(draw=1, ref=eps) + res(draw=year, ref=u3); 

Draws of residuals u1, u2, and u3 are specified with a variable name (or expression), in this 
case variable year.  This ensures that transitory residuals ,1tu  through , 1t Ju −  are independent 
across years.  The draw of residual eps is the same for all replications of the outcome, i.e., the 
same (person-specific) value of ε  applies throughout the panel.  Heterogeneity residual eps must 
be integrated-out, because the overall covariance matrix of probit outcomes would otherwise not 
be block-diagonal any more; see the technical note below.  Integrated residuals may be from 
normal or finite mixture distributions.   

The usual rules on residual specifications apply, that is, you may include multiple residuals, 
multiply them by parameters or regressor sets, etc.  There is one restriction:  residual draws must 
be the same in all model specifications of a particular multinomial probit.  For example, the 
following will generate an error message: 
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multinomial probit model; 
   outcome = occ; 
   model 2 = ... + intres(draw=1, ref=eps) + ...; 
   model 3 = ... + intres(draw=2, ref=eps) + ...; 
   model 4 = ... + intres(draw=3, ref=eps) + ...; 

(As noted above, the same restriction applies to non-integrated residuals within a multinomial 
probit model.)  In practice, this is not a restriction; we cannot think of a case in which it would 
make sense to have multiple draws of residuals belonging to the same distribution in one outcome 
module.  Of course, multiple residual draws may be specified across different outcomes. 

Residuals may be correlated with residuals in other model statements, leading to multinomial 
probit models in a multiprocess setting. 

Technical Note:  Block-diagonal Covariance Matrices 

With a great deal of care, you could estimate multinomial probit models without using the 
multinomial probit model statement.  Consider outcome Y that may take values 0, 1, or 
2.  We arbitrarily select 0 as the omitted category.  The model is: 

*
1 1 1
*
2 2 2

* *
1 2
* * *
1 1 2
* * *
2 2 1

0 if 0 and 0
1 if 0 and 
2 if 0 and 

y X u
y X u

y y
Y y y y
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β
β

′ = +
 ′= +
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= > >
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The multinomial probit model specification could be: 

define regset XBeta1; var=...; 
define regset XBeta2; var=...; 
define normal distribution; dim=2; 
   name=u1; 
   name=u2; 
 
multinomial probit model; 
   outcome = Y; 
   model 1 = regset XBeta1 + res(draw=1, ref=u1); 
   model 2 = regset XBeta2 + res(draw=1, ref=u2); 

Now let’s study the likelihood function carefully.  For example, alternative 1 is chosen if  
*
1
* * * *
1 2 1 2

0  and

   0

y

y y y y

>

> ⇔ − >
 

We can write this as two simple probits: 
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/*  Specify y1>0  */ 
probit model;  keep if (Y==1); 
   outcome = (Y==1); 
   model = regset XBeta1 + res(draw=1, ref=u1); 
 
/*  Specify y1-y2>0  */ 
probit model;  keep if (Y==1); 
   outcome = (Y==1); 
   model = regset XBeta1 + res(draw=1, ref=u1) 
         - regset XBeta2 - res(draw=1, ref=u2); 

Writing probit models for the other alternatives in a similar manner, and condensing things a 
little, the entire multinomial probit model could equivalently be specified as: 

/*  Specify y1<>0  */ 
probit model;  keep if (Y==0 or Y==1); 
   outcome = (Y==1); 
   model = regset XBeta1 + res(draw=1, ref=u1); 
 
/*  Specify y2<>0  */ 
probit model;  keep if (Y==0 or Y==2); 
   outcome = (Y==2); 
   model = regset XBeta2 + res(draw=1, ref=u2); 
 
/*  Specify y1-y2<>0  */ 
probit model;  keep if (Y==1 or Y==2); 
   outcome = (Y==1); 
   model = regset XBeta1 + res(draw=1, ref=u1) 
         - regset XBeta2 - res(draw=1, ref=u2); 

In other words, each multinomial probit outcome with three potential values contributes two 
correlated probit modules to the likelihood.  The likelihood function involves a 2-by-2 covariance 
matrix of probit residuals.  (Similarly, each multinomial probit outcome with four potential values 
contributes three correlated probit modules; the likelihood function involves a 3-by-3 covariance 
matrix.) 

Now consider a multilevel extension.  The above logic carries through, but the likelihood 
function now involves a covariance matrix of dimension 2T-by-2T, where T is the number of 
replications (outcomes) in an observation.  aML only knows how to compute cumulative normal 
probabilities of matrices up to 3-by-3, so this spells trouble even for T=2.  Fortunately, without 
additional residuals (heterogeneity), the 2T-by-2T matrix is block-diagonal with T blocks of 2-by-
2 matrices along the diagonal.  aML recognizes this block-diagonality and computes the 
cumulative normal probabilities one block at a time.  Adding heterogeneity is not a problem, so 
long as it is integrated-out.  If unobserved heterogeneity is specified as a non-integrated residual, 
however, the 2T-by-2T matrix is no longer block-diagonal and its cumulative normal probability 
cannot be computed.  This results in an error message. 
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13.16. Starting Values 
The end of the control file needs to contain initial parameter values for the iterative maximum 

likelihood search procedure.  The syntax is as follows: 

starting values; 
name1   {T|F}   x1 
name2   {T|F}   x2 
name3   {T|F}   x3 
... 
; 

where name1, et cetera, are user-selected coefficient names of up to eight characters and x1, et 
cetera, their starting values.  Starting values are also referred to as initial values.  The coefficient 
names may consist of any character except blanks, tabs, and semicolons, unless you enclose the 
name in single or double quotes.  For coefficients on data variables in regressor sets, it is common 
to give coefficient names the same name as the data variables, but this need not be done.  It often 
cannot be done, namely when you transform data variables on-the-fly.  For example, a regressor 
set may contain “school<12”, flagging a high school drop-out.  You may give its coefficient any 
name, including “dropout” and “educ<HS”. 

The order of starting values is determined by the order in which sets of parameters are 
defined, as described in the sections that document building block definitions.  

The starting values x1, et cetera, must be real numbers.  There is one exception: in the 
definition of vectors that make up a finite mixture distribution, you may let aML determine 
starting values.  In that case, and that case alone, the starting value may be stated as “auto” 
(without the double quotes). 

If the parameter is to be estimated, a “T” appears in between its name and starting value; if the 
parameter is fixed, an “F”.  (Think of these as “True” and “False” relative to the assumption that 
the parameter needs to be estimated.) 

You may instruct aML to search sequentially over alternative sets of free parameters.  The 
program uses optimized values of parameters from the previous round for the next round of 
estimation.  This is done by typing multiple T’s and F’s between parameter names and their initial 
values.  These T’s and F’s must not be separated by spaces or other characters. For example, if a 
parameter needs to be fixed in the first round, and freed up in the second and third rounds, the 
following needs to be specified: 

name   FTT   x 

For example, you may want to first estimate the intercept(s) only (fixing all other parameters), 
then free up regression parameters, and finally parameters related to residual distributions.  The 
starting values may look as follows: 
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starting values; 
 
Constant   TTT   0 
X1         FTT   0 
X2         FTT   0 
Sigma      FFT   1 
; 

Multiple T’s and F’s can be very convenient if one is building up starting values for a model.  
As a general rule, it is a good strategy to build up such models by first estimating individual 
equations separately, then putting them together with (say) only intercepts and simultaneity 
parameters estimated, and as a third step freeing up all parameters.  While it is always preferable 
to check the results of intermediary steps, it may save time to specify the step procedure in 
advance and let the program run through the sequence automatically.  

The program will only execute subsequent rounds of estimation if the preceding round 
converged successfully.  The same number of T/F values must be specified for each and every 
parameter. 
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13.17. Expressions 
In most cases where aML’s control file requires a variable name, you may instead specify an 

expression involving zero or more variables.  With zero variables, you would specify a constant: 
“1” to denote an intercept in a regressor set, “origin=0” in a duration spline specification, et 
cetera.  In outcome specifications, constants are not allowed, because aML would not know at 
what level (how often) the outcome needs to be evaluated.  In other words, expressions that 
specify an outcome must involve one or more variables.  If there is only one level in the data, no 
confusion is possible and no variable is required. 

The following table lists the operators that aML supports. 

exp(x) exponent 
int(x) integer portion (truncation) 
log(x) natural logarithm 
abs(x) absolute value 
sqrt(x) square root 
spline(x, nodes) piecewise-linear spline transformation (see below) 
min(x,y[,...]) minimum 
max(x,y[,...]) maximum 
x^y x to the power y 
x*y x times y 
x/y x divided by y 
x+y x plus y 
x-y x minus y 
x==y x equals y (evaluates to 0 if false, to 1 if true)  
x<y x is less than y (evaluates to 0 if false, to 1 if true)  
x<=y x is less than or equal to y (evaluates to 0 if false, to 1 if true) 
x>y x is greater than y (evaluates to 0 if false, to 1 if true) 
x>=y x is greater or equal to than y (evaluates to 0 if false, to 1 if true) 
x!=y x is not equal to y (evaluates to 0 if false, to 1 if true) 
x and y Boolean and (evaluates to 1 if and only if both x and y equal 1)  
x or y Boolean or (evaluates to 1 if x, y, or both equal 1)  
not x Boolean not (evaluates to 1 if x equals 0)  
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In addition to x!=y, aML accepts x~=y to denote inequality. 

With one exception, all expressions evaluate to a scalar.  The exception is the spline 
transformation, which evaluates to an array, i.e., to multiple scalars.  It only enters as part of a 
regressor set.  For example, suppose you wish to estimate the effect of age on some outcome of 
interest, and allow for different slopes under age 20; between age 20 and 50; and over age 50: 

spline(age, 20 50) 

Formally, the spline transformation is given by: 

spline  ( , )
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where ν ν ν1 2  … n , denote the nodes.  Note that each spline segment connects to the other at the 
node that separates them.  In other words, the piecewise-linear spline transformation is a 
continuous function.  Also see Panis (1994). 

There is no limit to combining transformations and expressions.  For example,  

min(age^3-12, sqrt(income), exp((survey-birthdt)/365.25)) 

is perfectly fine, should that make sense.   

Variables that appear in expressions need not be at the same data level.  Their result is at the 
lowest level of any of the variables in the expression.  For example, if x is a level 3 variable and y 
a level 4 variable, then x*y will behave as-if it is a level 4 variable. 
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14. aML Output 

By default, aML writes output of its estimation to standard output and to an output file.  The 
output file typically has extension “.out”, but you may specify other output file names using 
option “-o” on the command line (page 264).  This chapter helps interpret the output that aML 
produces. 

The output may be distinguished into five sections.  Section 14.1 documents general output; 
Section 14.2 discusses aML’s feedback on the building blocks that you specified; Section 14.3 
does the same on model specifications; Section 14.4 explains information on the search process; 
Section 14.5 describes the results of estimation; and Section 14.6, finally, discusses warnings and 
error messages. 

Note that you may not see only part of the output illustrated below depending on the level of 
output information; see “option screen info level” and “option file info level”.  
By default, these are set to 3 and 5, respectively.  The output below is based on level 5, the highest 
level. 

14.1. General 
The first part of aML’s output states the title of the run; displays license information; the date 

and time that the run started; the names of the control file and the data file; the data the data file 
was created; the version number of raw2aml that created it; convergence criteria; a frequency 
distribution of data structures in the data, and the numbers of outcomes that they generate; and 
information pertaining to weighted optimization.  Most of the information is self-explanatory.  For 
example: 

  1 ======================================================================== 
  2 =                  This is the title of the run                        = 
  3 ======================================================================== 
  4  
  5                  +-----------------------------------+ 
  6                  |  aML version:    1.00             | 
  7                  |  Serial number:  D1021020         | 
  8                  |  Licensed to:    User Name        | 
  9                  |                  Affiliation      | 
 10                  |  Academic license, single user    | 
 11                  +-----------------------------------+ 
 12  
 13 Start of program:  Sun Jan  9 11:07:01 2000 
 14 Control file:      filename.aml 
 15 Input data file:   \projects\data\mydata.dat 
 16      Created on:   Sun Jan  9 10:58:57 2000 
 17      Created by:   raw2aml version 1.00 
 18  
 19 Converge if wgn < 1.0 
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 20  
 21 Frequency distribution of data structures: 
 22  STRUCTURE |   Freq.  Percent 
 23 -----------+------------------ 
 24        100 |   7202    11.96   (7202 outcomes) 
 25        200 |   4860     8.07   (4860 outcomes) 
 26        300 |  10243    17.02   (10243 outcomes) 
 27        400 |   9426    15.66   (9426 outcomes) 
 28        510 |  21326    35.43   (21326 outcomes) 
 29        520 |   7141    11.86   (7141 outcomes) 
 30 -----------+------------------ 
 31      Total |  60198   100.00   (60198 outcomes) 
 32  
 33 Note: the number of observations is 5825, the number of level 2 branches 
 34 60198; they generated 60198 outcomes. 
 35  
 36 Observations are weighted by normalized variable ‘nsampwt’; the sum of 
 37 weights is 5697.6167, the number of observations that are used in the 
 38 estimation 5825, so weights are scaled by 1.02236. 

The frequency distribution of data structures (lines 21-31) not only shows how many level 2 
branches there are in the data, but also how many outcomes each data structure generates.  In the 
sample file, each level 2 branch generated one outcome.  If some outcomes were at level 3 or 
lower, each level 2 branch would generate potentially multiple outcomes. 

Lines 36-38 provide information on weighted optimization.  In this case, the control file 
contained “option normweight=nsampwt”, where nsampwt is a level 1 variable.  As 
indicated by the output, its average value is slightly less than one.  It is used as a normalized 
weight, so aML inflates each weight by 1.02236 such that the sum of weights is equal to the 
number of observations. 
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14.2. Building Block Definitions and Summary Statistics 
Next, aML repeats definitions of building blocks.  It also writes out the name(s) that you 

assigned to their coefficients, which may help you determine whether you lined up the starting 
values in the right order.  aML also provides some relevant summary statistics. 

14.2.1. Parameters, Vectors, and Matrices 

Suppose you defined and initialized a vector as follows: 

define vector VectorName;  ref = 10 20 30; 
   dim=4; 
   range=(0,1); 
   increasing=no; 
 
<...> 
 
starting values; 
Vec(1)   T   .2 
Vec(2)   T   .4 
Vec(3)   T   .6 
Vec(4)   T   .8 
<... 
; 

This definition would be repeated as follows: 

 define vector VectorName;  /* coefficient names ‘Vec(1)’-’Vec(4)’ */ 
    ref=10 20 30; 
    dim=4; 
    increasing=no; 
    range=(0,1); 

Make sure that the definition is repeated correctly.  Carefully check that the names that you 
assigned to the vector’s coefficients, Vec(1) through Vec(4), are matched correctly in the 
“comment” that aML wrote out.  This helps protect against misalignment of starting values.  
Definitions and coefficient names of parameters and matrices are repeated similarly. 

14.2.2. Regressor Sets 

aML repeats regressor set definitions in the output file and provides summary statistics on its 
regressors.  For example: 
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define regressor set Reg_u; 
   var = (nummar>1) (2<=parity<=10) (inschool==2 or inschool==3) 
         (inschool==0)*(educyr<12) (inschool==0)*(educyr>12) 
         (inschool==0)*(educyr==12) dadlths dadgths momlths momgths 
         (fam14g!=1); 
 
   ---------+-----------------  Summary statistics  ---------------- 
   name     |      #        Mean     Std Dev         Min         Max 
   ---------+------------------------------------------------------- 
   PrevMar  |  84768    .0150411    .1217169         0.0         1.0 
   Parity2+ |  84768    0.259119    .4381536         0.0         1.0 
   Inschool |  84768    .1914166    .3934185         0.0         1.0 
   Educ<hs  |  84768    0.097525    .2966731         0.0         1.0 
   Educ=hs  |  84768    .1570404    0.363841         0.0         1.0 
   Educ>hs  |  84768    .0326302    .1776679         0.0         1.0 
   dad<hs   |  84768    .4195195    .4538405         0.0         1.0 
   dad>hs   |  84768    .2413783    .3956354         0.0         1.0 
   mom<hs   |  84768     0.44169    .4827995         0.0         1.0 
   mom>hs   |  84768    .1761318    .3711942         0.0         1.0 
   famnot1  |  84768    .3487637    .4765818         0.0         1.0 

All transformations in the regressor set are repeated.  The summary statistics list coefficient 
names; this helps protect against misalignment of starting values.  They also list the number of 
times variables enter any model, their means, standard deviations, minimum and maximum values.  
The means and standard deviations are computed unweighted, even if optimization is weighted. 

14.2.3. Splines 

aML repeats spline definitions in the output file and provides summary statistics on the 
(origin) variables to which they are applied.  For example: 

define spline AgePattern; 
   intercept;     /* intercept coefficient Constant */ 
   nodes= 16 20 25;  /* slope coefficients age0-16 - age25+ */ 
 
   ---------+-----------------  Summary statistics  ---------------- 
            |      #        Mean     Std Dev         Min         Max 
   ---------+------------------------------------------------------- 
   origin   |    150    12.35693    19.54654         0.0      80.835 

This spline was defined with an intercept and three nodes, i.e., with a total of five coefficients.  
aML states that the names of these coefficients, in the starting values, are “Constant” (for the 
intercept) and “age0-16” through “age25+” (for the four slopes); this helps protect against 
misalignment of starting values.   

It also provides summary statistics of “origin”.  This is not necessarily a variable name.  It 
summarizes all origin variables (where the spline is used as a duration spline in hazard models) 
and to-be-transformed variables (where the spline is used as a regressor spline in any model). 
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14.2.4. Distributions 

aML supports four types of distributions:  normal, ARMA(p,q), CAR(1), and finite mixture.  
It reproduces the definition in the output and indicates which coefficient names match the 
definitions.  For example, for a four-variate normal distribution, output may be: 

   define normal distribution;  dim=4; 
   name=u1; 
   name=u2; 
   name=u3; 
   name=u4; 
   search=cholesky; 
   /* NOTE: no restrictions are placed on standard deviations or    */ 
   /* correlation coefficients.  The following matrix shows names   */ 
   /* of standard deviations (on the diagonal) and correlation      */ 
   /* coefficients (off the diagonal) in the starting values.       */ 
   /*    sigma_u1                                                   */ 
   /*    rho_u2u1  sigma_u2                                         */ 
   /*    rho_u3u1  rho_u3u2  sigma_u3                               */ 
   /*    rho_u4u1  rho_u4u2  rho_u4u3  sigma_u4                     */ 

Carefully study the note in comment-style as it tells the names of coefficients in starting 
values that form the correlation matrix.  No restrictions were placed on standard deviations and 
correlations of this distribution.  The order of starting values gets a bit trickier when there are 
restrictions.  Consider the following definition: 

define normal distribution; dim=4; 
   name=eps1; 
   name=eps2; 
   name=eps3; 
   name=eps4; 
   restrictions sigma(1)=sigma(2)=sigma(3)=sigma(4) 
                rho(1,2)=rho(2,3)=rho(3,4) 
                rho(1,3)=rho(2,4); 
<...> 
starting values; 
 
sigma    T    1 
rho1     T    .6 
rho2     T    .4 
rho3     T    .2 
; 

Notice that this distribution’s covariance matrix is restricted to be band-diagonal.  The output 
contains the following: 
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define normal distribution;  dim=4; 
   name=eps1; 
   name=eps2; 
   name=eps3; 
   name=eps4; 
   restriction sigma(1)=sigma(2); 
   restriction sigma(1)=sigma(3); 
   restriction sigma(1)=sigma(4); 
   restriction rho(2,1)=rho(3,2); 
   restriction rho(3,1)=rho(4,2); 
   restriction rho(2,1)=rho(4,3); 
   /* NOTE: restrictions are placed on standard deviations or       */ 
   /* or correlation coefficients.  The following matrix shows the  */ 
   /* names of standard deviations (on the diagonal) and            */ 
   /* correlation coefficients (off the diagonal) in the starting   */ 
   /* values.  Please check this matrix carefully:                  */ 
   /*    sigma                                                      */ 
   /*    rho1      sigma                                            */ 
   /*    rho2      rho1      sigma                                  */ 
   /*    rho3      rho2      rho1      sigma                        */ 

aML writes the restrictions pairwise, but equivalently.  It is very important that you carefully 
check that your starting values correspond to the standard deviations and correlations that you 
intend them to be.   

Similarly, aML repeats the definitions of finite mixture, ARMA, and CAR(1) distributions, 
including the starting value coefficients that correspond to their parameters. 
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14.3. Model Specifications and Summary Statistics 
The output repeats each model specification, followed by summary statistics of the 

outcome(s) and of other important variables.  For example: 

continuous model; 
   data structure = 2000; 
   keep if 18<=age<=70; 
   outcome = wage; 
   model = regset continuous + 
      intres(draw=1, ref=d1) + 
      res(draw=match, ref=u1) 
      ; 
 
   Summary statistics of the outcome and selected variables: 
 
            |      #        Mean     Std Dev         Min         Max 
   ---------+------------------------------------------------------- 
   outcome  |   4417     127.505    28.98207    34.31187    197.4787 
 
 
      match    |       Freq.    Percent 
   ------------+------------------------ 
             1 |        724       16.39 
             2 |        722       16.35 
             3 |        722       16.35 
             4 |        727       16.46 
             5 |        751       17.00 
             6 |        771       17.46 
   ------------+------------------------ 
         Total |       4417      100.00 
 
            |      #        Mean     Std Dev         Min         Max 
   ---------+------------------------------------------------------- 
   age      |   4417    48.37831    12.08324          15          70 

For continuous outcomes, aML writes out summary statistics of the outcome and of any 
variable that was used in keep/drop, draw, or indirect referencing expressions.  If the number of 
distinct values is fewer than or equal to the maximum number of frequency categories, aML 
presents a frequency table; otherwise, a table with mean, standard deviation, minimum, and 
maximum values.  Also see “option maximum number of frequency categories” on 
page 279; the default is 20 categories. 

An example of output of an ordered probit model: 

ordered probit model; 
   threshold vars = T1m (-Inf=-99999) T2m (Inf=99999); 
   model = regset X + 
      intres(draw=1, ref=eps) + 
      res(draw=_iid, ref=N(0,1)) 
      ; 
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   Summary statistics of the outcome and selected variables: 
 
            |      #        Mean     Std Dev         Min         Max 
   ---------+------------------------------------------------------- 
   outcome1 |   1000    -63199.6    48249.22      -99999    1.987932 
   outcome2 |   1000     14800.5    35527.12    .0011356       99999 

Note that aML includes “res(draw=_iid, ref=N(0,1))” in the model specifications, 
even though this was not specified in the control file (not shown).  It serves as a reminder of 
aML’s default behavior to insert an iid standard normal residual into (ordered) probit models, 
unless you explicitly specify a non-integrated residual. 

Also note that summary statistics of the outcome (threshold) variables are labeled 
“outcome1” and “outcome2”, even though the names of the data variables are “T1m” and “T2m”.  
The reason is that threshold variables may be expressions, and you should be mostly interested in 
the outcomes themselves.   

An example of a hazard model: 

hazard model; 
   keep if marnum==1; 
   censor = censor; 
   duration = lower upper; 
   timemarks = time; 
   model = durspline(origin=0, ref=FemaleAge) + 
      durspline(origin=time1980, ref=FemaleTime) + 
      regset FemaleGetmar 
      ; 
 
   Summary statistics of the outcome and selected variables: 
 
   Hazard spell durations (for noncensored spells, lower and upper 
   duration variables and their difference; for censored spells, 
   spell duration): 
 
       censor |      #        Mean     Std Dev         Min         Max 
   -----------+------------------------------------------------------- 
     / lower  |  13610    22.00632    5.092896      12.961      76.964 
   0 - upper  |  13610    22.08666    5.093879       13.04      77.046 
     \ window |  13610    .0805665    .0022844    .0519981    .0830002 
   1 - spell  |   1157    44.17905    14.42554      28.504      84.999 
 
 
      marnum   |       Freq.    Percent 
   ------------+------------------------ 
             1 |      14767      100.00 
   ------------+------------------------ 
         Total |      14767      100.00 
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            |      #        Mean     Std Dev         Min         Max 
   ---------+------------------------------------------------------- 
   time1980 |  14767    -36.9581    16.00037     -68.961     -14.045 

First note the table with summary statistics of spell durations.  For non-censored cases, 
summary statistics of the lower and upper bound of the event window are presented, as well as on 
their difference, i.e., the width of the window.  For censored cases, aML just shows summary 
statistics of the spell duration. 

Tabulations and summary statistics are furthermore presented of other key variables; here 
“marnum” and “time1980”. 

Finally, an example of a negative binomial model specification: 

 41 negative binomial model; 
 42    outcome = count; 
 43    exposure = exposure; 
 44    dispersion = par Alpha; 
 45    incidence = exp(regset BetaX); 
 46  
 47    Summary statistics of the outcome and selected variables: 
 48  
 49             |      #        Mean     Std Dev         Min         Max 
 50    ---------+------------------------------------------------------- 
 51    outcome  |   1000     178.463    315.2044           0        3762 
 52  
 53             |      #        Mean     Std Dev         Min         Max 
 54    ---------+------------------------------------------------------- 
 55    exposure |   1000    71.50072    28.28182           1          96 

As before, the name of the outcome variable is “counts”, but a frequency table or summary 
statistics are given under the “outcome” label. 
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14.4. Search Process 
The next part of the output file provides feedback on the search process.  For example (line 

numbers added): 

119 Number of parameters in model:       15 
120 Number of parameters estimated:      15 
121  
122 Starting values: 
123      Name      Est?     Value 
124   1  Constant   T    -22.450061 
125   2  age0-16    T      1.210481 
126   3  age16-20   T       .359682 
127   4  age20-25   T      -.030738 
128   5  age25+     T      -.075655 
129   6  time       T      -.006536 
130   7  Intercpt   T       .000000 
131   8  black      T      -.512751 
132   9  native     T       .169042 
133  10  asian      T      -.229725 
134  11  hispanic   T      -.226453 
135  12  dropout    T       .088895 
136  13  college    T      -.376332 
137  14  perminc    T      -.025333 
138  15  sigma      T       .600000    (must be strictly positive) 
139  
140 ====================================================================== 
141 =                      RESULTS OF OPTIMIZATION                       = 
142 ====================================================================== 
143  
144  
145 ITERATION 1            LOG-LIKELIHOOD:  -76093.694498 
146  
147 PARAMETER        VALUE     GRADIENT   SEARCH DIR 
148 Constant     -22.45006     493.9406    -.1661642 
149 age0-16       1.210481     8001.586    -.0262199 
150 age16-20      .3596821     3699.932      .153883 
151 age20-25     -.0307377     5432.061     .2181848 
152 age25+        -.075655     2711.092    -.0037534 
153 time         -.0065356    -3401.718    -.0035644 
154 Intercpt            .0     493.9406           .0 
155 black         -.512751     75.02762    -.2231791 
156 native        .1690424     6.275706     .0196938 
157 asian        -.2297253    -21.36751    -.2668793 
158 hispanic     -.2264531     75.08633     -.032642 
159 dropout       .0888951     375.8768     .1567529 
160 college      -.3763322    -233.0915     -.557282 
161 perminc      -.0253332    -372.9549    -.0099529 
162 sigma               .6    -1501.509     .8320498 
163  
164 SMALLEST EIGENVALUES: 
165     -3.4E-12    3.219836    64.26053    117.9607    170.7055 
166  
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167 REL PARAM CHG:  7.098269      WGTD GRAD NORM:   29.3267 
168     GRAD NORM:  11368.06       REL LN-L IMPR:       N/A 
169  
170 SEARCHING TO IMPROVE FUNCTION VALUE (OLD LN-L =   -76093.694498): 
171                   STEPSIZE:  1       NEW LN-L =   -76532.209608 
172                   STEPSIZE:  1/2     NEW LN-L =   -75922.091156 
173  
174 ---------------------------------------------------------------------- 
175  
176 ITERATION 2            LOG-LIKELIHOOD:  -75922.091156 
177                        ABSOLUTE IMPROVEMENT:  171.603342 
178  
179 PARAMETER        VALUE     GRADIENT   SEARCH DIR 
180 Constant     -22.53314     128.5995    -.0479446 
181 age0-16       1.197371     2129.599     .0009946 
182 age16-20      .4366236     1930.517     .0044825 
183 age20-25      .0783547     3913.216     .0225655 
184 age25+       -.0775317     1773.486    -.0150967 
185 time         -.0083178     1842.724      .000258 
186 Intercpt            .0     128.5995           .0 
187 black        -.6243405     61.29071     .0883843 
188 native        .1788893     6.082661     .0279626 
189 asian         -.363165    -19.90757     -.080802 
190 hispanic     -.2427741     32.28349     .0327518 
191 dropout       .1672716      231.346     .0833646 
192 college      -.6549732    -173.6912    -.2235022 
193 perminc      -.0303096    -293.8676     -.004868 
194 sigma         .9269465    -1691.306    -.1613431 
195  
196 SMALLEST EIGENVALUES: 
197     -2.5E-13    3.181893    61.10427    90.34634    378.3696 
198  
199 REL PARAM CHG:   .498379      WGTD GRAD NORM:  20.83758 
200     GRAD NORM:  5760.651       REL LN-L IMPR:  .0022552 
201  
202 SEARCHING TO IMPROVE FUNCTION VALUE (OLD LN-L =   -75922.091156): 
203                   STEPSIZE:  1       NEW LN-L =   -75742.815607 
204                   STEPSIZE:  2       NEW LN-L =   -75992.649674 
205  
206 ---------------------------------------------------------------------- 
207  
208 ITERATION 3            LOG-LIKELIHOOD:  -75742.815607 
 
et cetera... 

Lines 119 and 120 report the total number of parameters in the model and the number over 
which the likelihood is maximized.  In the example, these numbers are the same, but one often 
fixes one or more parameters to some constant value. 

Lines 122-138 repeat the starting values that you specified.  Note that sigma must be strictly 
positive.  It is the standard deviation of a distribution (not shown), and aML automatically 
imposed a range restriction. 
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Subsequent lines show the iterative search process.  For example, lines 147-162 show the 
current iteration’s parameter values, their derivatives, and search direction.  The latter two are in 
terms of the untransformed parameters, not in terms of internal transformations that ensure that 
parameters remain in legitimate ranges (such as sigma in the example). 

Line 165 shows the five smallest eigenvalues of the Hessian matrix (matrix of second 
derivatives).  (Strictly speaking, they are the opposites of eigenvalues, as eigenvalues of the 
Hessian are negative, except possibly for very small values due to numerical imprecision).  These 
eigenvalues are extremely important! 

! Be sure to keep an eye on the smallest eigenvalues of the Hessian matrix as the 
maximum likelihood search process unfolds.  Eigenvalues that are zero or close to zero 
are indicative of underidentification of your model. 

In the example, we deliberately included a duration spline with an intercept and a regressor 
set with an intercept (definitions not shown).  These intercepts are perfectly collinear, which 
shows up as a near-zero eigenvalue.  (The reported smallest eigenvalue, -3.4E-12, is not quite zero 
because of numerical imprecision.)  Fortunately, aML’s search algorithm is pretty smart: the 
search direction on the second intercept is zero (line 154).   

Line 167-168 report the current values of four potential convergence criteria.  By default, 
convergence is achieved when the weighted gradient norm is less than 0.1 (page 276). 

Line 171 shows the results of stepping out one times the search direction.  The likelihood is 
worse, so the search continues at one-half the search direction.  This likelihood is better, so aML 
accepts those new parameters and moves to the next iteration and recomputes the gradient, 
Hessian, and search direction (lines 176-194).  Note that the new parameters result in a smaller 
weighted gradient norm.  Lines 202-204 indicate that stepping out one times the search direction 
improves the likelihood, but twice the search direction does not. 

You may be tempted to lower the level of output information and suppress much of the 
intermediate results during the search process.  We recommend that you resist this temptation.  
The intermediate results include at least three important items: 

• Eigenvalues of the Hessian provide very useful information on model identification.  If 
they are close to zero from the onset, there is probably a multicollinearity in your model, 
for example because you specified too many intercepts.  If the smallest eigenvalue moves 
toward zero during the search, chances are that some standard deviation became very 
small, or some correlation close to -1 or +1.  This indicates that the residual is not 
identified, for example because you specified independent draws where the same draw 
should apply to multiple modules. 

• The weighted gradient norm should steadily decrease throughout the search process.  
Nothing is necessarily wrong with your model if it increases from iteration to iteration, 
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but the search method is probably inefficient.  It is not uncommon for the weighted 
gradient norm to increase when the parameter values step out two or more times the 
search direction.  In that case, you may achieve faster convergence by limiting the 
number of steps the search is allowed to take at any iteration.  For example, you may 
want to restrict “option step range = -10 to 0” (page 275) so that aML never 
steps out more than one (=20) times the search direction.  Taking small steps, as small as 
1/1024 (=2-10) is rarely a problem. 

• If parameters are close to their optimal value, the largest likelihood improvement tends to 
be achieved with a stepsize equal to one.  If larger or smaller steps improve the likelihood 
more, the parameters may not be close to their optimum.  (If the log-likelihood were 
perfectly parabolic, one step would jump straight to the maximum value, with just one 
iteration.  The log-likelihood is not parabolic, but for most problems the approximation is 
fairly good once the search process reaches the top.)  Non-unit stepsizes are not a 
problem, just an indication that the search has some way to go.  In particular, for 
continuous models, it is very common to see large steps early in the search.  (Also see 
“option save step” on page 276.) 
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14.5. Results of Estimation 
The last part of the output file contains the results of estimation.  For example (line numbers 

added): 

427 ====================================================================== 
428 =                 ESTIMATION CONVERGED SUCCESSFULLY                  = 
429 =                       RESULTS OF ESTIMATION                        = 
430 ====================================================================== 
431  
432 Convergence based on: 
433    Weighted gradient norm:         .0480711 < .1 
434    Relative function improvement:  1.23E-06 
435    Gradient norm:                  22.54625 
436    Relative parameter change:      .0035144 
437  
438 ====================================================================== 
439  
440 Log Likelihood:  -75720.0124 
441                                           BHHH-based, non-corrected 
442   Parameter    Free?     Estimate         Std Err        T-statistic 
443  
444   1  Constant    T    -22.591371052     .78449806968      -28.7972 
445   2  age0-16     T      1.197949328     .04988006075       24.0166 
446   3  age16-20    T     .43723030037     .01227691256       35.6140 
447   4  age20-25    T     .12465562729     .01297718019        9.6058 
448   5  age25+      T    -.09206057295     .00329222907      -27.9630 
449   6  time        T    -.00764218713     .00069488763      -10.9977 
450   7  Intercpt    T               .0               .0        ------ 
451   8  black       T    -.59885711048     .03589285179      -16.6846 
452   9  native      T      .2113552647     .10338393444        2.0444 
453  10  asian       T    -.43549499468     .09280273712       -4.6927 
454  11  hispanic    T    -.25576485619     .04284996174       -5.9688 
455  12  dropout     T     .25185460741     .02589089049        9.7275 
456  13  college     T    -.74556603336     .04187967317      -17.8026 
457  14  perminc     T     -.0361925048     .00897502062       -4.0326 
458  15  sigma       T     .80455265366     .03772444049       21.3271 
459  
460 ====================================================================== 
461  
462 Elapsed clock time is 170 seconds. 

Line 428 states that the search process converged.  Alternatively, you may see messages 
indicating that convergence was not achieved because the function could not be improved or 
because the number of iterations was insufficiently low.  Despite non-convergence, aML will 
report parameter estimates, standard errors, et cetera, based on the last iteration.  Use this 
information for subsequent attempts only.  In particular, the standard errors are based on (an 
approximation to) the Hessian matrix, which is only valid at the optimum parameter values. 
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Lines 432-436 report the values of measures that may be used to establish convergence.  In 
this case, as reported, convergence is based on the default criterion, namely a weighted gradient 
norm of less than 0.1.  See “option converge” on page 276.   

Lines 440-458 present the parameter estimates, their asymptotic standard errors, and t-
statistics.  Note the qualification of standard errors as “BHHH-based, non-corrected”.  
Asymptotically, standard errors are related to the inverse of the Hessian matrix.  By default, aML 
approximates this matrix as minus the sum over observations of the outerproduct of first 
derivatives.  This “BHHH”  approximation is itself based on asymptotic theory (Berndt, Hall, 
Hall, and Hausman, 1973).  For smaller samples, we recommend that you specify “option 
numerical standard errors” (Section 13.1.5) to compute the Hessian matrix numerically.  
Another set of standard errors, so-called Huber-corrected or “robust” standard errors, may be 
computed with “option huber” (Section 13.1.6).  If applicable, aML reports all three sets of 
standard errors. 

Additional detail on the results of estimation may be obtained by specifying, for example, 
“option variance-covariance matrix” (for a variance-covariance matrix of parameter estimates; 
Section 13.1.7), “option correlation matrix (for the corresponding correlation matrix; Section 
13.1.8), “option table format” (for easier-to-read table format; Section 13.1.10); and “option 
starting value format” (for output in the form of starting values in control files; Section 13.1.11).  
The latter is useful for updating control files with converged values, but this is more capably 
handled with update, a separate program that is bundled with aML; see Section 15.1.  
Furthermore, table formats are more capably created with bundled program mktab; see Section 
15.2.  

The last output line states how many clock-time seconds it took for the run to complete.  The 
output reproduced here was created on a PC.  On UNIX, it would distinguish between clock-time 
and CPU-time. 
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14.6. Error Messages and Warnings 
aML’s error messages are designed to provide helpful feedback on the nature of the problem.  

There are many hundreds different error messages; they should be self-explanatory and are not 
documented here.  We would very much appreciate hearing from you if any error message was 
unclear or may otherwise be improved; please contact <support@applied-ml.com>. 

Most warnings are also self-explanatory.  We elaborate on a small subset. 

*** WARNING: likelihood underflows to zero for ID = id *** 

This warning may appear during the search procedure.  It indicates that the 
likelihood for a particular observation was so small that it could not be distinguished 
from zero due to numerical limitations.  This occurs when the current model parameters 
provide an extremely poor fit to the data of the observation.   

You may see this message when the search process is stepping out many steps 
(number of search directions) because the likelihood keeps on improving.  At some point, 
the parameters wander out in a very unlikely region, and underflows may result.  This is 
no cause for concern; aML will realize that the current stepsize is too large, and back up. 

If there are many underflows early on in the search process, your starting values are 
extremely poor.  Start over and build up your model in small steps, such that the 
converged values of each run are good starting values for the next step.  Even if there are 
only a few underflows early on in the search process, there is some cause for concern.  
Your starting values are apparently quite poor.  aML may find its way to the maximum 
likelihood despite poor starting values.  However, if the likelihood function is not 
globally concave, it may be unable to find the maximum.  Indeed, it is not uncommon 
that likelihood functions for complex multiprocess, multilevel models are not concave.  
Try to build up your model in small steps, such that the converged values of each run are 
good starting values for the next step. 

If there are observations whose likelihood underflows to zero in the final iteration, 
you should be very concerned.  It indicates that even the final, perhaps converged, 
parameter values are a very poor fit to some of the data’s observations.  This should 
really not happen, and you should re-evaluate your choice of model. 

WARNING: the following correlation matrix is not positive definite: 

This warning may pop up during the search procedure, either because you initialized 
correlations of a trivariate or higher-dimensional distribution such that its covariance 
matrix is not positive definite (and thus illegitimate), or because aML’s search process 
stepped into an illegitimate region.  By default, aML will reduce all correlations 
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proportionally until the matrix is positive definite.  You may turn that default behavior 
off by specifying “option ensure positive definite=no”; see page 280. 

A more elegant solution that prevents non-positive definite covariance matrices is to 
specify “search=cholesky” as part of the distribution’s definition (page 304).  This option 
makes aML internally transform covariance matrices into Cholesky-decomposed 
parameters, and search on that transformation.  The Cholesky search is only available 
when you did not specify any equality restrictions across standard deviations or 
correlations.  

aML makes you initialize standard deviations and correlations, rather than variances 
and covariances.  This ensures that univariate and bivariate distributions always have a 
positive definite covariance matrix.  Only correlations of trivariate and higher-
dimensional distributions may wander into illegitimate territory. 

WARNING:  one or more standard deviations are (near) zero: 

This warning is typically the result of a search process that tried to push a standard 
deviation toward zero.   

It may be the case that the standard deviation is significantly different from zero, and 
that aML’s search algorithm went the wrong direction.  This sometimes occurs when you 
initialize a standard deviation at a small value, perhaps because that specification is close 
to a previous run without the residual.  We therefore recommend that you always 
initialize standard deviations well above zero.  (In the order of 0.6 for hazard and 
categorical outcome models; at about the same level as transitory residuals in continuous 
outcome models.) 

It may also be the case that the standard deviation truly is zero.  If you intend to 
capture unobserved heterogeneity with this residual, and you have good reasons to 
believe that there really should be heterogeneity, then check that your draw variables are 
in order.  With rare exceptions, identification of heterogeneity requires that the same 
draw enters in multiple equations.  If instead you drew heterogeneity residuals 
independently across repeated observations, heterogeneity cannot be distinguished from 
transitory variation, and the standard deviation will go to zero. 
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15. Auxiliary Utility Programs 

The aML package consists of six executable files: aml, raw2aml, update, mktab, 
amltest, and points.  The latter four are utilities that are not central to model estimation, but 
they improve the efficiency of using aML.  This chapter documents each utility in turn. 

15.1. update 
The update utility updates starting values in a control file with converged parameter estimates 

in the corresponding output file.  The syntax is: 

update [-f] file.aml [file.aml...file.aml] 

where “file.aml” is an aML control file.  If no extension is specified, update assumes a “.aml” 
extension.  You may specify and update multiple control files at once. 

The control file will only be updated if the output file indicates that the estimation process 
converged.  Option “-f” forces an update of starting values, even if no convergence was achieved. 

In the aML control file, “option starting value format” generates a listing of 
parameter estimates in starting value format (page 273).  Update does not require that the output 
file contain this format.  In fact, it was written to make updating starting values more efficient than 
the otherwise required copy-and-paste action. 

15.2. mktab 
The mktab utility reads one or more output files and writes out parameter estimates and 

standard errors (or t-statistics) in easy-to-read table-format.  The syntax is: 

mktab [-option] file.out [file.out...[+]...file.out] 

where “file.out” is the name of an aML output file that contains estimation results.  If no 
extension is specified, mktab assumes extension “.out”. 

You may specify multiple output files and tabulate the results in multiple columns.  The 
results of two or more output files may be tabulated in a single column by specifying a “+” 
between the file names.  For example, suppose you estimate a two-equation model by first 
estimating the two separate equations in two control files (eqn1.aml and eqn2.aml, say) and 
then put them together with a correlation coefficient (and/or other parameters which account for 
simultaneity across the equations) in a third control file (eqn3.aml, say).  The results may be 
tabulated and compared by 

mktab eqn1 + eqn2 eqn3 
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or: 

mktab eqn3 eqn1 + eqn2 

The order in which output files are listed determines the order in which parameters are listed along 
the rows.  The output tends to look best when you list the most comprehensive specification first, 
so that, for example, standard deviations and correlations of a distribution are listed together.  
Duplicate parameter names are listed in the order in which they are encountered.  If there are 
duplicates, mktab issues a warning. 

The following optional switches are supported: 

-c places commas between columns and eliminates spaces.  This option is convenient for 
importing the table into spreadsheet and word processor packages.  Direct mktab’s output 
into a file (mktab -c file.out > temp).  To insert into a spreadsheet package, 
directly import the file (temp) and instruct the package that fields are delimited by 
commas.  To insert into a word processor document, open the file (temp) with any text 
editor, copy its contents, paste it into a word processor document, and convert the text into 
a table, where text fields are separated by commas.  To neatly line up all parameter 
estimates and standard errors or t-statistics, insert a tab mark that aligns decimal points in 
every cell. 

-s uses strict criteria for significance asterisks.  By default, mktab places one asterisk (‘*’) 
next to parameters that are asymptotically significant at 10 percent, two (‘**’) for 5 
percent, and three (‘***’) for 1 percent significance.  Option “-s” instead uses ‘*’ at 5 
percent, ‘**’ at 1 percent, and ‘***’ at 0.1 percent. 

-t lists absolute t-statistics in parentheses, instead of the standard errors are that are listed by 
default.  May not be combined with –p. 

-p lists p-values in parentheses, instead of the standard errors are that are listed by default.  
May not be combined with –t. 

-ns suppresses standard errors (but not significance asterisks); 

-NS suppresses standard errors and significance asterisks; 

-n specifies the number of digits after the decimal point with which parameter estimates and 
standard errors (or t-statistics or p-values) are written out.  The default is 4.   

Options need to be specified separately.  For example, options –c and –t may not be 
combined into –ct. 

15.3. amltest 
The amltest utility is a convenient way to conduct a likelihood ratio test on nested 

specifications.  The syntax is: 
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amltest file1.out file2.out 

where the two arguments are names of aML output files.  If no extension is specified, extension 
“.out” is assumed.   

The output files should contain estimates of two nested models.  The order in which the two 
output files are specified does not matter, i.e., it does not matter whether the first model is nested 
in the second or vice versa.  The likelihood ratio test provides a joint significance test of the 
parameters that are fixed in the nested model.  Suppose the nested model has n1 parameters over 
which the likelihood was maximized and the nesting model has n2 free parameters (n1<n2).  
Their respective log-likelihood are lnl1 and lnl2, say.  Twice the difference in their log-
likelihoods is distributed as a Chi-square distribution with n2-n1 degrees of freedom.  Amltest 
computes the probability that the chi-square distribution exceeds twice the difference in the output 
files, i.e., it computes the level of significance at which the n2-n1 additional parameters are 
jointly different from zero. 

There is no check that the models are indeed nested.   

15.4. points 
The points utility computes Gauss-Hermite support points and weights.  The syntax is: 

points n 

aML uses Gauss-Hermite quadrature to compute the support points and weights that 
approximate normal distributions that are integrated-out (see Section 13.2.6, in particular page 305 
and following).  The points utility computes those points and weights for n number of integration 
points.  For example: 

points 6 

produces the following output: 

             points       weights 
     1   -3.324257E+00  2.555784E-03 
     2   -1.889176E+00  8.861575E-02 
     3   -6.167066E-01  4.088285E-01 
     4    6.167066E-01  4.088285E-01 
     5    1.889176E+00  8.861575E-02 
     6    3.324257E+00  2.555784E-03 

The graph on the right visualizes the six-
point Gauss-Hermite approximation to the 
standard normal distribution.  (The first 
and sixth points are barely visible because 
their weights are only 0.002555784.)  For 
normal distributions with standard 
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deviation σ , the points are scaled by σ .  For k-variate distributions, each k-vector of 6k 
combinations of points is premultiplied by the Cholesky decomposition of the covariance matrix. 
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16. Miscellaneous Features 

16.1. Control File Comments 
Raw2aml and aML control files may include user comments.  These comments must begin 

with a slash-asterisk combination (/*) and terminate with a asterisk-slash (*/).  Comments may 
be nested.   

Comments may not be inserted in strings.  For example, the following title includes every 
character that is typed inside the double quotes, including the word “contains”: 

option title = “This title /* contains */ a comment-like string”; 

Similarly, if you would like to include a slash-asterisk combination in a coefficient name, you may 
do so by enclosing the entire name in double quotes: 

starting values; 
“/*name*/”   T    0 
<et cetera> 
; 

Raw2aml and aML preprocess their control files and strip out comments before parsing the 
statements.  By default, the stripped-down version of the control file is removed after parsing is 
done, but you may save it permanently to disk by using the “-m” option that both raw2aml and 
aML support.  See pages 222 and 264. 

16.2. Macro Language 
Raw2aml and aML support a simple macro language.  It may be used to avoid repetition of 

control file statements.  A macro must be defined before it may be used.  The definition syntax is: 

%macro macroname; 
   <statements or other text> 
%mend; 

where the “macroname” may be up to twelve characters in length.  It may contain any printable 
character except blanks and semicolons.  It may not contain any arguments.  Macros may be 
invoked as: 

%macroname 

Note that this invocation does not terminate with a semicolon.  It need not even terminate with a 
blank space or line feed (carriage return) character.  You may therefore use macros for portions of 
names or strings.  For example: 
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%macro sex;male%mend; 
option title = “This model refers to %sexs only”; 

The title resolves to “This model refers to males only”.  This strict resolution implies 
that the first characters of the name of a macro may not be equal to the full name of another 
macro.  For example, if you define two macros by the names of “temp” and “temp1”, you would 
not be able to use “temp1”, because “%temp1” evaluates to the definition of “temp”, followed by 
the number “1”. 

Macros may be nested.  For example: 

%MACRO covariates; 
   thisvar 
   thatvar 
   %race 
%MEND; 
%MACRO race;  (race==1)  %MEND; 

macro “%covariates” now expands to: 

   thisvar 
   thatvar 
     (race==1) 

Raw2aml and aML preprocess their control files and resolve macros before parsing the 
statements.  By default, the version with resolved macros is removed after parsing is done, but you 
may save it permanently to disk by using the “-m” option that both raw2aml and aML support 
(pages 222 and 264, respectively).  This can be quite helpful, especially for debugging nested 
macros. 
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Branch Multilevel data may be thought of as consisting of a top level (level 1) with zero 
or more level 2 branches, zero or more level 3 subbranches, zero or more level 4 
subbranches, et cetera.  A branch is thus a data unit at a specific level.  We try to 
be consistent and use “branch” for level 2 units and “subbranch” for levels 3 and 
lower.  Also see Section 3.1.1. 

Building block Anything that may appear on the right-hand-side of model equations.  The most 
common building blocks are regressor sets, distributions with residuals, and (for 
hazard models) splines that make up the baseline hazard.  Other building blocks 
include parameters, vectors, and matrices.  aML requires that a building block is 
first defined and then used to specify (potentially multiple) models.  Its 
definition introduces parameters.  By defining a building block only once, the 
same parameters may be used in multiple model statements, thereby restricting 
their values across models.  See Section 13.2 for building block definitions. 

Control variable Variable in the data set that is used for control purposes.  For example, variables 
specifying a data structure number, an observation ID, and a number of 
subbranches are control variables.  Control variables are typically created by the 
researcher, rather than a response of a survey subject.  

Data structure A data structure is a subset of variables in the data.  It contains both outcome 
variables and explanatory variables.  For a number of reasons it may be 
convenient or necessary to create subsets of variables into distinct data 
structures.  This is almost always only applicable to multiprocess models in 
which covariates of one process are not readily placed in the same records as 
covariates of another process.  Data structures are optional and tend to be used 
by advanced users only.  Also see page 319. 

Data variable Any variable in the data set that is not a control variable.  Data variables may be 
dependent or independent variables in statistical models.  They tend to be survey 
responses or transformations of survey responses.  Data variables are always 
listed as part of the varlist in a raw2aml control file:  “level n var = 
varlist;”. 

Draw By their very nature, residuals are unobserved to the analyst.  However, each 
residual has a certain value in each realization.  Each realization is the result of a 
draw.  In multilevel models, there is only one realized value of the residual 
corresponding to the highest (most aggregated) level, one draw.  At lower levels, 
there will be more than one draw.  In model specifications, residuals are 
specified with a “draw=expression”; all outcomes with the same residual 
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draw are correlated.  Draws are only unique within distribution, i.e., the same 
draw values for residuals from different distributions do not result in correlation.  
Residuals are correlated if and only if they belong to the same distribution and 
they have the same draw. 

Hessian matrix Matrix of second derivatives of the log-likelihood with respect to the model 
parameters.  This matrix plays an important role in the maximum likelihood 
search algorithm and the computation of standard errors.  By default, it is 
approximated as minus the sum over all observations of the outerproduct of first 
derivatives (Berndt, Hall, Hall, Hausman, 1974).  Also see “option 
numerical search” (Section 13.1.4) and “option numerical standard 
errors” (Section 13.1.5). 

Observation A set of observed outcomes and explanatory variables that is statistically 
independent from other sets.  Two annual wage records of the same person are 
statistically dependent, need to be modeled jointly, and are thus part of the same 
observation.  Wage records of another person (who is not related to the first 
person) are independent from those of the first person, and thus part of another 
observation.  An observation in aML always corresponds to the highest level, 
the most aggregated level, level 1.  There may be multiple ASCII records, 
possibly in multiple ASCII files, pertaining to one observation.  Raw2aml and 
aML will know that they are part of the same observation because they all have 
the same ID. 

Parameter In generic terms, a parameter is an unknown scalar that is part of one or more 
model equations.  In that interpretation, any regression coefficient, standard 
deviation, et cetera, is a parameter.  Specifically, aML recognizes a parameter 
building block (Section 13.2.1).  It is a scalar parameter which, once defined, 
you may use in any model specification.  For example, you may interact other 
model elements with parameters. 

Regressor set A regressor set is a vector of variables, say X, forming a regression equation, 
′β X , for which coefficient vector β  is to be estimated (or assigned a fixed 

value).  The variables are typically just variables in the data set, but may be 
formed as transformations or interactions of variables.  The resulting regression 
equation may be used in any model.  Think of a regressor set as a ′β X , but 
realize that X may be an expression involving zero or more variables. 
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abs(x) function, 27, 412 

aML-formatted data, 14, 54, 92, 100 

amltest, 432–33 

and (Boolean operator), 28, 412 

ARMA distribution, 185–91, 246, 307–12 

ASCII input data, 12, 234–54 

asterisks, significance, 51 

autoregressive. See ARMA distribution 

baseline duration dependency. See baseline 
hazard 

baseline hazard, 40, 45, 46, 145, 180–84, 
375 

bend point. See node 

Berndt, Hall, Hall, and Hausman. See 
BHHH 

BHHH, 26, 270, 271, 272, 277, 428, 438 

binomial model, 381–82 
example, 58–66 
starting values, 212–14 

Boolean operator, 28, 278, 320, 412 

branch, 32, 54, 89, 90, 91, 93, 94, 103, 437 

building block, 16, 24, 202, 283, 323, 437 
ARMA distribution. See ARMA 

distribution 
conditional. See indirect referencing 
cumulative AR(1) distribution. See 

CAR(1) distribution 
direct referencing. See direct referencing 
duration spline. See duration spline 

finite mixture distribution. See finite 
mixture distribution 

indirect referencing. See indirect 
referencing 

interacting. See interaction of building 
blocks 

matrix. See matrix 
normal distribution. See normal 

distribution 
parameter. See parameter 
regressor set. See regressor set 
regressor spline. See regressor spline 
spline. See spline 
structural. See structural 
vector. See vector 

CAR(1) distribution, 190–91, 246, 312–14 

censored 
hazard spell, 40 
regression, 74–77 
spell, 41, 47, 104, 209, 370 

check99999, 281 

Cholesky decomposition, 281, 304–5, 306, 
430 

clock, 48, 180–84, 181, 279, 326, 371, 378 

collapse data levels, 245–47 

command line, 3 
aml, 14, 263 
amltest, 432 
mktab, 50, 431 
points, 433 
raw2aml, 221 
update, 431 

comments, 435 

continuous model, 150–53, 178–79, 341–49 
example, 35–39 
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starting values, 207–8 

control variable, 93, 437 
data structure, 94 
ID, 93 
subbranches, 94 

convergence, 23, 202, 276–78 

correlation, 127, 146, 148, 166, 200, 201, 
301, 303, 333–40 
matrix, 273 

covariance. See correlation 

Cox regression model, 40 

cross-classification, 123 

cumulative autoregressive. See CAR(1) 
distribution 

data preparation, 89–125 

data set name, 269 

data structure, 319, 437 

data variables, 437 
draw variables, 96 
level-specific, 95 
outcome variables, 96 
reference variables, 96 

delimiter 
in tables, 31, 432 
of ASCII data fields, 100, 236 
of strings, 58, 269 

denominator, 320 

direct referencing, 171, 324 

do-it-yourself tobit, 395–98 

domain, 186, 284, 309 

draws, 337, 437 
example, 337, 339 

drop if, 320 

duration spline, 47, 280, 290–94, 326–27, 
332, 374 
vs regressor spline, 379 

duration variable, 42, 43, 123, 181, 372 

editor (text), 4 

endogeneity, 112, 150 

equality condition, 28, 412 

errors in variables, 176–77 

exp(x) function, 27, 412 

expression, 27–29, 412–13 

failure time model. See hazard model 

file info level, 270 

FIML, 18 

finite mixture distribution, 139–43, 295, 
297, 314–17 

first derivatives. See gradient vector 
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